Do you want to publish a course? Click here

140 - Jiren Liu , Shude Mao 2015
We present an analysis of the diffuse soft X-ray emission from the nuclear region of M51 combining both XMM-Newton RGS and Chandra data. Most of the RGS spectrum of M51 can be fitted with a thermal model with a temperature of $sim0.5$ keV except for the OVII triplet, which is forbidden-line dominated. The Fe L-shell lines peak around the southern cloud, where the OVIII and NVII Lya lines also peak. In contrast, the peak of the OVII forbidden line is about 10$$ offset from that of the other lines, indicating that it is from a spatially distinct component. The spatial distribution of the OVII triplet mapped by the Chandra data shows that most of the OVII triplet flux is located at faint regions near edges, instead of the southern cloud where other lines peak. This distribution of the OVII triplet is inconsistent with the photoionization model. Other mechanisms that could produce the anomalous OVII triplet, including a recombining plasma and charge exchange X-ray emission, are discussed.
144 - Ling Zhu , R. J. Long , Shude Mao 2014
We study the dynamics of the giant elliptical galaxy M87 from the central to the outermost regions with the made-to-measure (M2M) method. We use a new catalogue of 922 globular cluster line-of- sight velocities extending to a projected radius of 180 kpc (equivalent to 25 M87 effective radii), and SAURON integral field unit data within the central 2.4 kpc. 263 globular clusters, mainly located beyond 40 kpc, are newly observed by the Next Generation Virgo Survey (NGVS). For the M2M modelling, the gravitational potential is taken as a combination of a luminous matter potential with a constant stellar mass-to-light ratio and a dark matter potential modelled as a logarithmic potential. Our best dynamical model returns a stellar mass-to-light ratio in the I band of M/LI = 6.0(+ -0.3) M_sun/L_sun with a dark matter potential scale velocity of 591(+ -50) km/s and scale radius of 42(+ -10) kpc. We determine the total mass of M87 within 180 kpc to be (1.5 + - 0.2) 10^13 M_sun. The mass within 40 kpc is smaller than previous estimates determined using globular cluster kinematics that did not extend beyond 45 kpc. With our new globular cluster velocities at much larger radii, we see that globular clusters around 40 kpc show an anomalously large velocity dispersion which affected previous results. The mass we derived is in good agreement with that inferred from ROSAT X-ray observation out to 180 kpc. Within 30 kpc our mass is also consistent with that inferred from Chandra and XMM-Newton X-ray observations, while within 120 kpc it is about 20% smaller. The model velocity dispersion anisotropy beta parameter for the globular clusters in M87 is small, varying from -0.2 at the centre to 0.2 at 40 kpc, and gradually decreasing to zero at 120 kpc.
We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have $2.94times 10^6$ RC stars over a viewing area of $90.25 ,textrm{deg}^2$. The data include the number counts, mean distance modulus ($mu$), dispersion in $mu$ and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the $E_3$ model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane $x_{0},y_{0}$, and vertical bar scale length $z_0$, is $x_0:y_0:z_0 approx 1.00:0.43:0.40$ (close to being prolate). The scale length of the stellar density profile along the bars major axis is $sim$ 0.67 kpc and has an angle of $29.4^circ$, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is $2.78 times 10^6$, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is $sim 5.8%$. We estimate the total mass of the bar is $sim 1.8 times 10^{10} M_odot$. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.
121 - F. S. Liu , Shude Mao (2 2012
We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1<z<0.4 in two recent large cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with both H{alpha} and [O II]{lambda}3727 line emission, which indicates significant ongoing star formation. They constitute about ~ 0.5% of the largest, optically-selected, low-redshift BCG sample, and the fraction is a strong function of cluster richness. Their star formation history can be well described by a recent minor and short starburst superimposed on an old stellar component, with the recent episode of star formation contributing on average only less than 1 percent of the total stellar mass. We show that the more massive star-forming BCGs in richer clusters tend to have higher star formation rate (SFR) and specific SFR (SFR per unit galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous clusters, and show that the fraction of star-forming BCGs in X-ray luminous clusters is almost one order of magnitude larger than that in optically-selected clusters. BCGs with star formation in cooling flow clusters usually have very flat optical spectra and show the most active star formation, which may be connected with cooling flows.
The flux-ratio anomalies observed in multiply-lensed quasar images are most plausibly explained as the result of perturbing structures superposed on the underlying smooth matter distribution of the primary lens. The cold dark matter cosmological model predicts that a large number of substructures should survive inside larger halos but, surprisingly, this population alone has been shown to be insufficient to explain the observed distribution of the flux ratios of quasars multiple images. Other halos (and their own subhalos) projected along the line of sight to the primary lens have been considered as additional source of perturbation. In this work, we use ray tracing through the Millennium II simulation to investigate the importance of projection effects due to halos and subhalos of mass m>1E8 Msun/h and extend our analysis to lower masses, m>1E6 Msun/h, using Monte-Carlo halo distributions. We find that the magnitude of the violation depends strongly on the density profile and concentration of the intervening halos, but clustering plays only a minor role. For a typical lensing geometry (lens at redshift 0.6 and source at redshift 2), background haloes (behind the main lens) are more likely to cause a violation than foreground halos. We conclude that line-of-sight structures can be as important as intrinsic substructures in causing flux-ratio anomalies. The combined effect of perturbing structures within the lens and along the line of sight in the LCDM universe results in a cusp-violation probability of 20-30%. This alleviates the discrepancy between models and current data, but a larger observational sample is required for a stronger test of the theory.
163 - F. S. Liu 2009
We search for ongoing major dry-mergers in a well selected sample of local Brightest Cluster Galaxies (BCGs) from the C4 cluster catalogue. 18 out of 515 early-type BCGs with redshift between 0.03 and 0.12 are found to be in major dry-mergers, which are selected as pairs (or triples) with $r$-band magnitude difference $dm<1.5$ and projected separation $rp<30$ kpc, and showing signatures of interaction in the form of significant asymmetry in residual images. We find that the fraction of BCGs in major dry-mergers increases with the richness of the clusters, consistent with the fact that richer clusters usually have more massive (or luminous) BCGs. We estimate that present-day early-type BCGs may have experienced on average $sim 0.6 (tmerge/0.3Gyr)^{-1}$ major dry-mergers and through this process increases their luminosity (mass) by $15% (tmerge/0.3Gyr)^{-1} (fmass/0.5)$ on average since $z=0.7$, where $tmerge$ is the merging timescale and $fmass$ is the mean mass fraction of companion galaxies added to the central ones. We also find that major dry-mergers do not seem to elevate radio activities in BCGs. Our study shows that major dry-mergers involving BCGs in clusters of galaxies are not rare in the local Universe, and they are an important channel for the formation and evolution of BCGs.
The photometry data base of the second phase of the OGLE microlensing experiment, OGLE-II, is a rich source of information about the kinematics and structure of the Galaxy. In this work we use the OGLE-II proper motion catalogue to identify candidate stars which have high proper motions. 521 stars with proper motion mu > 50 mas/yr in the OGLE-II proper motion catalogue (Sumi 2004) were cross-identified with stars in the MACHO high proper motion catalogue, and the DENIS and 2MASS infra-red photometry catalogues. Photometric distances were computed for stars with colours consistent with G/K and M type stars. 6 stars were newly identified as possible nearby (< 50 pc) M dwarfs.
111 - F. S. Liu , X. Y. Xia , Shude Mao 2007
We investigate the photometric properties of the early type Brightest Cluster Galaxies (BCGs) using a carefully selected sample of 85 BCGs from the C4 cluster catalogue with redshift less than 0.1. We perform accurate background subtractions, and surface photometry for these BCGs to 25 $magsec$ in the Sloan $r$-band. By quantitatively analysing the gradient of the Petrosian profiles of BCGs, we find that a large fraction of BCGs have extended stellar envelopes in their outskirts; more luminous BCGs tend to have more extended stellar halos that are likely connected with mergers. A comparison sample of elliptical galaxies was chosen with similar apparent magnitude and redshift ranges, for which the same photometric analysis procedure is applied. We find that BCGs have steeper size-luminosity ($R propto L^alpha$) and Faber-Jackson ($L propto sigma^beta$) relations than the bulk of early type galaxies. Furthermore, the power-law indices ($alpha$ and $beta$) in these relations increase as the isophotal limits become deeper. For isophotal limits from 22 to 25 $magsec$, BCGs are usually larger than the bulk of early type galaxies, and a large fraction ($sim 49%$) of BCGs have disky isophotal shapes. The differences in the scaling relations are consistent with a scenario where the dynamical structure and formation route of BCGs may be different from the bulk of early type galaxies, in particular dry (dissipationless) mergers may play a more important role in their formation; we highlight several possible dry merger candidates in our sample.
97 - Martin C. Smith 2007
Gravitational microlensing surveys target very dense stellar fields in the local group. As a consequence the microlensed source stars are often blended with nearby unresolved stars. The presence of `blending is a cause of major uncertainty when determining the lensing properties of events towards the Galactic centre. After demonstrating empirical cases of blending we utilize Monte Carlo simulations to probe the effects of blending. We generate artificial microlensing events using an HST luminosity function convolved to typical ground-based seeing, adopting a range of values for the stellar density and seeing. We find that a significant fraction of bright events are blended, contrary to the oft-quoted assumption that bright events should be free from blending. We probe the effect that this erroneous assumption has on both the observed event timescale distribution and the optical depth, using realistic detection criteria relevent to the different surveys. Importantly, under this assumption the latter quantity appears to be reasonably unaffected across our adopted values for seeing and density. The timescale distribution is however biased towards smaller values, even for the least dense fields. The dominant source of blending is from lensing of faint source stars, rather than lensing of bright source stars blended with nearby fainter stars. We also explore other issues, such as the centroid motion of blended events and the phenomena of `negative blending. Furthermore, we breifly note that blending can affect the determination of the centre of the red clump giant region from an observed luminosity function. This has implications for a variety of studies, e.g. mapping extinction towards the bulge and attempts to constrain the parameters of the Galactic bar through red clump giant number counts. (Abridged)
Using a large galaxy group catalogue based on the Sloan Digital Sky Survey Data Release 4 we measure three different types of intrinsic galaxy alignment within groups: halo alignment between the orientation of the brightest group galaxies (BGG) and the distribution of its satellite galaxies, radial alignment between the orientation of a satellite galaxy and the direction towards its BGG, and direct alignment between the orientation of the BGG and that of its satellites. In agreement with previous studies we find that satellite galaxies are preferentially located along the major axis. In addition, on scales r < 0.7 Rvir we find that red satellites are preferentially aligned radially with the direction to the BGG. The orientations of blue satellites, however, are perfectly consistent with being isotropic. Finally, on scales r < 0.1 Rvir, we find a weak but significant indication for direct alignment between satellites and BGGs. We briefly discuss the implications for weak lensing measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا