Do you want to publish a course? Click here

Linear precoding techniques can achieve near- optimal capacity due to the special channel property in down- link massive MIMO systems, but involve high complexity since complicated matrix inversion of large size is required. In this paper, we propose a low-complexity linear precoding scheme based on the Gauss-Seidel (GS) method. The proposed scheme can achieve the capacity-approaching performance of the classical linear precoding schemes in an iterative way without complicated matrix inversion, which can reduce the overall complexity by one order of magnitude. The performance guarantee of the proposed GS-based precoding is analyzed from the following three aspects. At first, we prove that GS-based precoding satisfies the transmit power constraint. Then, we prove that GS-based precoding enjoys a faster convergence rate than the recently proposed Neumann-based precoding. At last, the convergence rate achieved by GS-based precoding is quantified, which reveals that GS-based precoding converges faster with the increasing number of BS antennas. To further accelerate the convergence rate and reduce the complexity, we propose a zone-based initial solution to GS-based precoding, which is much closer to the final solution than the traditional initial solution. Simulation results demonstrate that the proposed scheme outperforms Neumann- based precoding, and achieves the exact capacity-approaching performance of the classical linear precoding schemes with only a small number of iterations both in Rayleigh fading channels and spatially correlated channels.
Mobile traffic is projected to increase 1000 times from 2010 to 2020. This poses significant challenges on the 5th generation (5G) wireless communication system design, including network structure, air interface, key transmission schemes, multiple access, and duplexing schemes. In this paper, full duplex networking issues are discussed, aiming to provide some insights on the design and possible future deployment for 5G. Particularly, the interference scenarios in full duplex are analyzed, followed by discussions on several candidate interference mitigation approaches, interference proof frame structures, transceiver structures for channel reciprocity recovery, and super full duplex base station where each sector operates in time division duplex (TDD) mode. The extension of TDD and frequency division duplex (FDD) to full duplex is also examined. It is anticipated that with future standardization and deployment of full duplex systems, TDD and FDD will be harmoniously integrated, supporting all the existing half duplex mobile phones efficiently, and leading to a substantially enhanced 5G system performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا