Do you want to publish a course? Click here

We study the most general renormalizable ${cal N}=1$ $U(N)$ Chern-Simons gauge theory coupled to a single (generically massive) fundamental matter multiplet. At leading order in the t Hooft large $N$ limit we present computations and conjectures for the $2 times 2$ $S$ matrix in these theories; our results apply at all orders in the t Hooft coupling and the matter self interaction. Our $S$ matrices are in perfect agreement with the recently conjectured strong weak coupling self duality of this class of theories. The consistency of our results with unitarity requires a modification of the usual rules of crossing symmetry in precisely the manner anticipated in arXiv:1404.6373, lending substantial support to the conjectures of that paper. In a certain range of coupling constants our $S$ matrices have a pole whose mass vanishes on a self dual codimension one surface in the space of couplings.
Using the techniques developed in arxiv: 1203.3544 we compute the universal part of the equilibrium partition function characteristic of a theory with multiple abelian U(1) anomalies in arbitrary even spacetime dimensions. This contribution is closely linked to the universal anomaly induced transport coefficients in hydrodynamics which have been studied before using entropy techniques. Equilibrium partition function provides an alternate and a microscopically more transparent way to derive the constraints on these transport coefficients. We re-derive this way all the known results on these transport coefficients including their polynomial structure which has recently been conjectured to be linked to the anomaly polynomial of the theory. Further we link the local description of anomaly induced transport in terms of a Gibbs current to the more global description in terms of the partition function .
Assuming gauge theory realization at the boundary, we show that the viscosity to entropy ratio is 1/(4 pi) where the bulk is represented by a large class of extremal black holes in anti-de Sitter space. In particular, this class includes multiple R-charged black holes in various dimensions.
After reviewing the thermodynamics and critical phenomena associated with AdS black holes carrying multiple R-charges in various dimensions, we do a Bragg-Williams like analysis of the systems around its critical points. This leads us to propose an effective potential governing the equilibrium properties of the boundary gauge theory. We also study certain non-equilibrium phenomena associated with these gauge theories. In particular, we compute the conductivities and diffusion coefficients for theories with multiple R-charges in four, three and six dimensions.
We study general rotating string solution in the AdS(4) X CP**3 background with a B_NS holonomy turned on over ${bf CP}^1$ $subset $ $ {bf CP}^3$. We find the giant magnon and single spike solutions for the string moving in this background corresponding to open spin chain. We calculate the corresponding dispersion relation among various conserved charges for both the cases. We further study the finite size effect on both the giant magnon and single spike solutions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا