Do you want to publish a course? Click here

204 - S. Seo , Xin Lu , J.-X. Zhu 2014
In four classes of materials, the layered copper-oxides, organics, iron-pnictides and heavy-fermion compounds, an unconventional superconducting state emerges as a magnetic transition is tuned toward absolute zero temperature, that is, toward a magnetic quantum-critical point (QCP). In most materials, the QCP is accessed by chemical substitutions or applied pressure. CeCoIn5 is one of the few materials that are born as a quantum-critical superconductor and, therefore, offers the opportunity to explore the consequences of chemical disorder. Cadmium-doped crystals of CeCoIn5 are a particularly interesting case where Cd substitution induces long-range magnetic order, as in Zn-doped copper-oxides. Applied pressure globally supresses the Cd-induced magnetic order and restores bulk superconductivity. Here we show, however, that local magnetic correlations, whose spatial extent decreases with applied pressure, persist at the extrapolated QCP. The residual droplets of impurity-induced magnetic moments prevent the reappearance of conventional signatures of quantum criticality, but induce a heterogeneous electronic state. These discoveries show that spin droplets can be a source of electronic heterogeneity in classes of strongly correlated electron systems and emphasize the need for caution when interpreting the effects of tuning a correlated system by chemical substitution.
61 - B. Woo , S. Seo , E. Park 2013
We report the pressure response of charge-density-wave (CDW) and ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa. The CDW transition temperature (T_{CDW}), which is reflected as a sharp inflection in the electrical resistivity, is almost independent of pressure up to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7 K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in T_{CDW}, the first-order FM phase transition, which decreases with applied pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions and the lower transition changes its nature to second order above 2.18 GPa. Enhancement both in the residual resistivity and the Fermi-liquid T^2 coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that arise from the possible presence of a FM quantum critical point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا