Do you want to publish a course? Click here

123 - S. Ejima , F. Lange , H. Fehske 2013
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W, respectively. We determine the phase boundaries between the Mott-insulating and superfluid phases for the lowest two Mott lobes from the chemical potentials. We calculate the tips of the Mott lobes from the Tomonaga-Luttinger liquid parameter and confirm the positions of the Kosterlitz-Thouless points from the von Neumann entanglement entropy. We find that physical quantities in the second Mott lobe such as the gap and the dynamical structure factor scale almost perfectly in t/(U+W), even close to the Mott transition. Strong-coupling perturbation theory shows that there is no true scaling but deviations from it are quantitatively small in the strong-coupling limit. This observation should remain true in higher dimensions and for not too large attractive three-body interactions.
127 - S. Ejima , T. Kaneko , Y. Ohta 2013
Using exact numerical techniques we investigate the nature of excitonic (electron-hole) bound states and the development of exciton coherence in the one-dimensional half-filled extended Falicov-Kimball model. The ground-state phase diagram of the model exhibits, besides band insulator and staggered orbital ordered phases, an excitonic insulator (EI) with power-law correlations. The criticality of the EI state shows up in the von Neumann entropy. The anomalous spectral function and condensation amplitude provide the binding energy and coherence length of the electron-hole pairs which, on their part, point towards a Coulomb interaction driven crossover from BCS-like electron-hole pairing fluctuations to tightly bound excitons. We show that while a mass imbalance between electrons and holes does not affect the location of the BCS-BEC crossover regime it favors staggered orbital ordering to the disadvantage of the EI. Within the BEC regime the quasiparticle dispersion develops a flat valence-band top in accord with the experimental finding for Ta$_2$NiSe$_5$.
141 - T. Kaneko , S. Ejima , H. Fehske 2013
We report on small-cluster exact-diagonalization calculations which prove the formation of electron-hole pairs (excitons) as prerequisite for spontaneous interlayer phase coherence in bilayer systems described by the extended Falicov-Kimball model. Evaluating the anomalous Greens function and momentum distribution function of the pairs, and thereby analyzing the dependence of the exciton binding energy, condensation amplitude, and coherence length on the Coulomb interaction strength, we demonstrate a crossover between a BCS-like electron-hole pairing transition and a Bose-Einstein condensation of tightly bound preformed excitons. We furthermore show that a mass imbalance between electrons and holes tends to suppress the condensation of excitons.
193 - S. Nishimoto , S. Ejima , 2012
We study the interplay of disorder and interaction effects including bosonic degrees of freedom in the framework of a generic one-dimensional transport model, the Anderson-Edwards model. Using the density-matrix renormalization group technique, we extract the localization length and the renormalization of the Tomonaga Luttinger liquid parameter from the charge-structure factor by a elaborate sample-average finite-size scaling procedure. The properties of the Anderson localized state can be described in terms of scaling relations of the metallic phase without disorder. We analyze how disorder competes with the charge-density-wave correlations triggered by the bosons and give evidence that strong disorder will destroy the charge-ordered state.
The nature of charge transport within a correlated background medium can be described by spinless fermions coupled to bosons in the model introduced by Edwards. Combining numerical density matrix renormalization group and analytical projector-based renormalization methods we explore the ground-state phase diagram of the Edwards model in one dimension. Below a critical boson frequency any long-range order disappears and the system becomes metallic. If the charge carriers are coupled to slow quantum bosons the Tomonaga-Luttinger liquid is attractive and finally makes room for a phase separated state, just as in the t-J model. The phase boundary separating repulsive from the attractive Tomonaga-Luttinger liquid is determined from long-wavelength charge correlations, whereas fermion segregation is indicated by a vanishing inverse compressibility. On approaching phase separation the photoemission spectra develop strong anomalies.
We explore the zero-temperature phase diagram of bosons interacting via Feshbach resonant pairing interactions in one dimension. Using DMRG (Density Matrix Renormalization Group) and field theory techniques we characterize the phases and quantum phase transitions in this low-dimensional setting. We provide a broad range of evidence in support of an Ising quantum phase transition separating distinct paired superfluids, including results for the energy gaps, correlation functions and entanglement entropy. In particular, we show that the Ising correlation length, order parameter and critical properties are directly accessible from a ratio of the atomic and molecular two-point functions. We further demonstrate that both the zero-momentum occupation numbers and the visibility are in accordance with the absence of a purely atomic superfluid phase. We comment on the connection to recent studies of boson pairing in a generalized classical XY model.
95 - S. Ejima , H. Fehske , 2011
In order to identify possible experimental signatures of the superfluid to Mott-insulator quantum phase transition we calculate the charge structure factor $S(k,omega)$ for the one-dimensional Bose-Hubbard model using the dynamical density-matrix renormalisation group (DDMRG) technique. Particularly we analyse the behaviour of $S(k, omega)$ by varying---at zero temperature---the Coulomb interaction strength within the first Mott lobe. For strong interactions, in the Mott-insulator phase, we demonstrate that the DDMRG results are well reproduced by a strong-coupling expansion, just as the quasi-particle dispersion. In the superfluid phase we determine the linear excitation spectrum near $k=0$ and compare the DDMRG data with results from mean-field theory.
103 - H. Fehske , S. Ejima , G. Wellein 2011
To understand how charge transport is affected by a background medium and vice versa we study a two-channel transport model which captures this interplay via a novel, effective fermion-boson coupling. By means of (dynamical) DMRG we prove that this model exhibits a metal-insulator transition at half-filling, where the metal typifies a repulsive Luttinger liquid and the insulator constitutes a charge density wave. The quantum phase transition point is determined consistently from the calculated photoemission spectra, the scaling of the Luttinger liquid exponent, the charge excitation gap, and the entanglement entropy.
We explore the Mott insulating state of single-band bosonic pairing Hamiltonians using analytical approaches and large scale density matrix renormalization group calculations. We focus on the second Mott lobe which exhibits a magnetic quantum phase transition in the Ising universality class. We use this feature to discuss the behavior of a range of physical observables within the framework of the 1D quantum Ising model and the strongly anisotropic Heisenberg model. This includes the properties of local expectation values and correlation functions both at and away from criticality. Depending on the microscopic interactions it is possible to achieve either antiferromagnetic or ferromagnetic exchange interactions and we highlight the possibility of observing the E8 mass spectrum for the critical Ising model in a longitudinal magnetic field.
77 - S. Ejima , H. Fehske , F. Gebhard 2011
We use the density-matrix renormalization group method to investigate ground-state and dynamic properties of the one-dimensional Bose-Hubbard model, the effective model of ultracold bosonic atoms in an optical lattice. For fixed maximum site occupancy $n_b=5$, we calculate the phase boundaries between the Mott insulator and the `superfluid phase for the lowest two Mott lobes. We extract the Tomonaga-Luttinger parameter from the density-density correlation function and determine accurately the critical interaction strength for the Mott transition. For both phases, we study the momentum distribution function in the homogeneous system, and the particle distribution and quasi-momentum distribution functions in a parabolic trap. With our zero-temperature method we determine the photoemission spectra in the Mott insulator and in the `superfluid phase of the one-dimensional Bose-Hubbard model. In the insulator, the Mott gap separates the quasi-particle and quasi-hole dispersions. In the `superfluid phase the spectral weight is concentrated around zero momentum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا