Do you want to publish a course? Click here

We have collected continuum data of a sample of D-type symbiotic stars. By modelling their spectral energy distribution in a colliding-wind theoretical scenario we have found the common characteristics to all the systems: 1) at least two dust shells are clearly present, one at sim 1000 K and the other at sim 400 K; they dominate the emission in the IR; 2) the radio data are explained by thermal self-absorbed emission from the reverse shock between the stars; while 3) the data in the long wavelength tail come from the expanding shock outwards the system; 4) in some symbiotic stars, the contribution from the WD in the UV is directly seen. Finally, 5) for some objects soft X-ray emitted by bremsstrahlung downstream of the reverse-shock between the stars are predicted. The results thus confirm the validity of the colliding wind model and the important role of the shocks. The comparison of the fluxes calculated at the nebula with those observed at Earth reveals the distribution throughout the system of the different components, in particular the nebulae and the dust shells. The correlation of shell radii with the orbital period shows that larger radii are found at larger periods. Moreover, the temperatures of the dust shells regarding the sample are found at 1000 K and <=400 K, while, in the case of late giants, they spread more uniformly throughout the same range.
110 - R. Angeloni 2009
MASYS is the AKARI spectroscopic survey of Symbiotic Stars in the Magellanic Clouds, and one of the European Open Time Observing Programmes approved for the AKARI (Post-Helium) Phase-3. It is providing the first ever near-IR spectra of extragalactic symbiotic stars. The observations are scheduled to be completed in July 2009.
In this work we analyze a sample of AGN spectra, selected from the 6th Data Release of the Sloan Digital Sky Survey, exploiting a generalized technique of line profile analysis, designed to take into account the whole profiles of their broad emission lines. We find that the line profile broadening functions result from a complex structure, but we may be able to infer some constraints about the role of the geometrical factor, thus improving our ability to estimate AGN properties and their relation with the host galaxy. Our results suggest that flattening and inclination within the structure of the Broad Line Region (BLR) must be taken into account. We detect low inclinations of the BLR motion plane with respect to our line of sight, typically i < 20 degrees, with a geometrical effect which generally decreases as the line profile becomes broader.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا