Do you want to publish a course? Click here

Gas response to the underlying stellar spirals is explored for M81 using unmagnetized hydrodynamic simulations. Constrained within the uncertainty of observations, 18 simulations are carried out to study the effects of selfgravity and to cover the parameter space comprising three different sound speeds and three different arm strengths. The results are confronted with those data observed at wavelengths of 8 $mu$m and 21 cm. In the outer disk, the ring-like structure observed in 8 $mu$m image is consistent with the response of cold neutral medium with an effective sound speed 7 km s$^{-1}$, while for the inner disk, the presence of spiral shocks can be understood as a result of 4:1 resonances associated with the warm neutral medium with an effective sound speed 19 km s$^{-1}$. Simulations with single effective sound speed alone cannot simultaneously explain the structures in the outer and inner disks. This justifies the coexistence of cold and warm neutral media in M81. The anomalously high streaming motions observed in the northeast arm and the outward shifted turning points in the iso-velocity contours seen along the southwest arm are interpreted as signatures of interactions with companion galaxies. The level of simulated streaming motions narrows down the uncertainty of observed arm strength toward larger amplitudes.
118 - B.F.Liu , Ronald E. Taam 2013
The magnitude of the viscosity and magnetic field parameters in hot accretion flows is investigated in low luminosity active galactic nuclei (LLAGNs). Theoretical studies show that a geometrically thin, optically thick disk is truncated at mass accretion rates less than a critical value by mass evaporated vertically from the disk to the corona, with the truncated region replaced by an advection dominated accretion flow (ADAF). The critical accretion rate for such a truncation is a function of the viscosity and magnetic field. Observations of X-ray photon indices and spectral fits of a number of LLAGNs published in the literature provide an estimate of the critical rate of mass accretion and the truncation radius respectively. By comparing the observational results with theoretical predictions, the viscosity and magnetic field parameters in the hot accretion flow region are estimated. Specifically, the mass accretion rates inferred in different sources constrain the viscosity parameter, whereas the truncation radii of the disk, as inferred from spectral fits, further constrain the magnetic field parameter. It is found that the value of the viscosity parameter in the corona/ADAF ranges from 0.17 to 0.5, with values clustered about 0.2-0.3. Magnetic pressure is required by the relatively small truncation radii for some LLAGNs and is found to be as high as its equipartition value with the gas pressure. The inferred values of the viscosity parameter are in agreement with those obtained from the observations of non-stationary accretion in stellar mass black hole X-ray transients. This consistency provides support for the paradigm that a geometrically thin disk is truncated by means of a mass evaporation process from the disk to the corona at low mass accretion rates.
The truncation of an optically thick, geometrically thin accretion disk is investigated in the context of low luminosity AGN (LLAGN). We generalize the disk evaporation model used in the interpretative framework of black hole X-ray binaries by including the effect of a magnetic field in accretion disks surrounding supermassive black holes. The critical transition mass accretion rate for which the disk is truncated is found to be insensitive to magnetic effects, but its inclusion leads to a smaller truncation radius in comparison to a model without its consideration. That is, a thin viscous disk is truncated for LLAGN at an Eddington ratio less than 0.03 for a standard viscosity parameter ($alpha = 0.3$). An increase of the viscosity parameter results in a higher critical transition mass accretion rate and a correspondingly smaller truncation distance, the latter accentuated by greater magnetic energy densities in the disk. Based on these results, the truncation radii inferred from spectral fits of LLAGN published in the literature are consistent with the disk evaporation model. The infrared emission arising from the truncated geometrically thin accretion disks may be responsible for the red bump seen in such LLAGN.
Recent observations of strikingly well-defined spirals in the circumstellar envelopes of asymptotic giant branch (AGB) stars point to the existence of binary companions in these objects. In the case of planet or brown dwarf mass companions, we investigate the observational properties of the spiral-onion shell wakes due to the gravitational interaction of these companions with the outflowing circumstellar matter. Three dimensional hydrodynamical simulations at high resolution show that the substellar mass objects produce detectable signatures at 100 AU distance, for the wake induced by a Jupiter to brown dwarf mass object orbiting a solar mass AGB star. In particular, the arm pattern propagates with a speed depending on the local wind and sound speeds, implying possible variations in the arm separation in the wind acceleration region and/or in a slow wind with significant temperature variation. The pattern propagation speeds of the inner and outer boundaries differ by twice the sound speed, leading to the overlap of high density boundaries in slow winds and producing a subpattern of the spiral arm feature. Vertically, the wake forms concentric arcs with angular sizes anticorrelated to the wind Mach number. We provide an empirical formula for the peak density enhancement as a function of the mass, orbital distance, and velocity of the object as well as the wind and local sound speeds. In typical condition of AGB envelopes, the arm-interarm density contrast can be greater than 30 % of the background density within a distance of ~10(M_p/M_J) AU for the object mass M_p in units of Jupiter mass M_J. These results suggest that such features may probe unseen substellar mass objects embedded in the winds of AGB stars and may be useful in planning future high sensitivity/resolution observations with ALMA.
The hydrodynamic evolution of the common envelope phase of a low mass binary composed of a 1.05 Msun red giant and a 0.6 Msun companion has been followed for five orbits of the system using a high resolution method in three spatial dimensions. During the rapid inspiral phase, the interaction of the companion with the red giants extended atmosphere causes about 25% of the common envelope to be ejected from the system, with mass continuing to be lost at the end of the simulation at a rate ~ 2 Msun/yr. In the process the resulting loss of angular momentum and energy reduces the orbital separation by a factor of seven. After this inspiral phase the eccentricity of the orbit rapidly decreases with time. The gravitational drag dominates hydrodynamic drag at all times in the evolution, and the commonly-used Bondi-Hoyle-Lyttleton prescription for estimating the accretion rate onto the companion significantly overestimates the true rate. On scales comparable to the orbital separation, the gas flow in the orbital plane in the vicinity of the two cores is subsonic with the gas nearly corotating with the red giant core and circulating about the red giant companion. On larger scales, 90% of the outflow is contained within 30 degrees of the orbital plane, and the spiral shocks in this material leave an imprint on the density and velocity structure. Of the energy released by the inspiral of the cores, only about 25% goes toward ejection of the envelope.
NGC 4945 is a Seyfert 2 galaxy at a distance of 3.82 Mpc. Its relative proximity has permitted a detailed SMA study of the circumnuclear molecular gas in a galaxy exhibiting an AGN. Based on an analysis of the high-resolution velocity field of the central region (20 X 20, 1 = 19 pc), we demonstrate that the S-shaped structure of the isovelocity contours is well reproduced by the numerical results of a two dimensional hydrodynamical simulation. In particular, the velocity structure is represented by the bending produced by a shock along the spiral density waves, which are excited at the outer-inner Lindblad resonance by a fast rotating bar. The simulated density map reveals a pair of tightly wound spirals in the center which pass through most of the ring-like (claimed to be a circumnuclear starburst ring by other authors) high intensity region in the observations as well as intersect several Pa$alpha$ emission line knots located outside the ring-like region. The calculated mass inflow rate at a scale of 50 pc is about three times the inferred mass accretion rate of the AGN of NGC 4945. We find that self-gravity of the gas is important and should be included in our model for NGC 4945. The model is compared with the gas orbit model discussed in Lim et al. (2009), and it is shown that the hydrodynamic model provides a better match to the observed position-velocity diagram and, hence, provides a more reliable prediction of the outer inner Lindblad resonance position.
Beyond the main sequence solar type stars undergo extensive mass loss, providing an environment where planet and brown dwarf companions interact with the surrounding material. To examine the interaction of substellar mass objects embedded in the stellar wind of an asymptotic giant branch (AGB) star, three dimensional hydrodynamical simulations at high resolution have been calculated utilizing the FLASH adaptive mesh refinement code. Attention is focused on the perturbation of the substellar mass objects on the morphology of the outflowing circumstellar matter. In particular, we determine the properties of the resulting spiral density wake as a function of the mass, orbital distance, and velocity of the object as well as the wind velocity and its sound velocity. Our results suggest that future observations of the spiral pattern may place important constraints on the properties of the unseen low mass companion in the outflowing stellar wind.
We present basic properties of primary stars that initiate a common envelope (CE) in a binary, while on the giant branch. We use the population-synthesis code described in Politano et al. (2010) and follow the evolution of a population of binary stars up to the point where the primary fills its Roche lobe and initiates a CE. We then collect the properties of each system, in particular the donor mass and the binding energy of the donors envelope, which are important for the treatment of a CE. We find that for most CEs, the donor mass is sufficiently low to define the core-envelope boundary reasonably well. We compute the envelope-structure parameter {lambda_mathrm{env}} from the binding energy and compare its distribution to typical assumptions that are made in population-synthesis codes. We conclude that {lambda_mathrm{env}} varies appreciably and that the assumption of a constant value for this parameter results in typical errors of 20--50%. In addition, such an assumption may well result in the implicit assumption of unintended and/or unphysical values for the CE parameter {alpha_mathrm{CE}}. Finally, we discuss accurate existing analytic fits for the envelope binding energy, which make these oversimplified assumptions for {lambda_mathrm{env}}, and the use of {lambda_mathrm{env}} in general, unnecessary.
The disk corona evaporation model extensively developed for the interpretation of observational features of black hole X-ray binaries (BHXRBs) is applied to AGNs. Since the evaporation of gas in the disk can lead to its truncation for accretion rates less than a maximal evaporation rate, the model can naturally account for the soft spectrum in high luminosity AGNs and the hard spectrum in low luminosity AGNs. The existence of two different luminosity levels describing transitions from the soft to hard state and from the hard to soft state in BHXRBs, when applied to AGNs, suggests that AGNs can be in either spectral state within a range of luminosities. For example, at a viscosity parameter, alpha, equal to 0.3, the Eddington ratio from the hard to soft transition and from the soft to hard transition occurs at 0.027 and 0.005 respectively. When the Eddington ratio of the AGN lies below the critical value corresponding to its evolutionary state, the disk is truncated. With decreasing Eddington ratios, the inner edge of the disk increases to greater distances from the black hole with a concomitant increase in the inner radius of the broad line region, $R_{BLR}$. The absence of an optically thick inner disk at low luminosities gives rise to region in the size of borad line-luminosity plane for which the relation $R_{BLR} propto L^{1/2}$ inferred at high luminosities is excluded. As a result, a lower limit to the accretion rate is predicted for the observability of broad emission lines, if the broad line region is associated with an optically thick accretion disk. Thus, true Seyfert 2 galaxies may exist at very low accretion rates/luminosities. The differences between BHXRBs and AGNs in the framework of the disk corona model are discussed and possible modifications to the model are briefly suggested.
We quantify an evolutionary channel for single sdB stars based on mergers of binaries containing a red giant star and a lower mass main sequence or brown dwarf companion in our Galaxy. Population synthesis calculations that follow mergers during the common envelope phase of evolution of such systems reveal a population of rapidly rotating horizontal branch stars with a distribution of core masses between 0.32 Mo - 0.7 Mo that is strongly peaked between 0.47 Mo - 0.54 Mo. The high rotation rates in these stars are a natural consequence of the orbital angular momentum deposition during the merger and the subsequent stellar contraction of the merged object from the tip of the red giant branch. We suggest that centrifugally enhanced mass loss facilitated by the rapid rotation of these stars may lead to the formation of single sdB stars for some of these objects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا