Do you want to publish a course? Click here

We investigate the stellar populations of 25 massive, galaxies ($log[M_ast/M_odot] geq 10.9$) at $1.5 < z < 2$ using data obtained with the K-band Multi-Object Spectrograph (KMOS) on the ESO VLT. Targets were selected to be quiescent based on their broadband colors and redshifts using data from the 3D-HST grism survey. The mean redshift of our sample is $bar{z} = 1.75$, where KMOS YJ-band data probe age- and metallicity-sensitive absorption features in the rest-frame optical, including the $G$ band, Fe I, and high-order Balmer lines. Fitting simple stellar population models to a stack of our KMOS spectra, we derive a mean age of $1.03^{+0.13}_{-0.08}$ Gyr. We confirm previous results suggesting a correlation between color and age for quiescent galaxies, finding mean ages of $1.22^{+0.56}_{-0.19}$ Gyr and $0.85^{+0.08}_{-0.05}$ Gyr for the reddest and bluest galaxies in our sample. Combining our KMOS measurements with those obtained from previous studies at $0.2 < z < 2$ we find evidence for a $2-3$ Gyr spread in the formation epoch of massive galaxies. At $z < 1$ the measured stellar ages are consistent with passive evolution, while at $1 < z lesssim2$ they appear to saturate at $sim$1 Gyr, which likely reflects changing demographics of the (mean) progenitor population. By comparing to star-formation histories inferred for normal star-forming galaxies, we show that the timescales required to form massive galaxies at $z gtrsim 1.5$ are consistent with the enhanced $alpha$-element abundances found in massive local early-type galaxies.
We obtained U_330 and B band images of the M31 nucleus using the High Resolution Camera of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The spatial resolution in the U_330-band, 0.03 FWHM, or 0.1 pc at M31, is sufficient to resolve the outskirts of the compact cluster (P3) of UV-bright stars surrounding the M31 black hole. The center of the cluster is marked by an extended source that is both brighter and redder than the other point sources within P3; it is likely to be a blend of several bright stars. We hypothesize that it marks the location of the M31 black hole. Both stellar photometry and a surface brightness fluctuation analysis, show that the P3 stellar population is consistent with early-type main sequence stars formed in a ~100 - ~200 Myr old starburst population. Evolutionary tracks of post early asymptotic giant-branch stars, associated with late-stage evolution of an old population, also traverse the U and U-B domain occupied by the P3 stars; but we argue that only a few stars could be accounted for that way. PEAGB evolution is very rapid, and there is no progenitor population of red giants associated with P3. The result that P3 comprises young stars is consistent with inferences from earlier HST observations of the integrated light of the cluster. Like the Milky Way, M31 harbors a black hole closely surrounded by apparently young stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا