Do you want to publish a course? Click here

It is postulated that quantum gravity is a sum over causal structures coupled to matter via scale evolution. Quantized causal structures can be described by studying simple matrix models where matrices are replaced by an algebra of quantum mechanical observables. In particular, previous studies constructed quantum gravity models by quantizing the moduli of Laplace, weight and defining-function operators on Fefferman-Graham ambient spaces. The algebra of these operators underlies conformal geometries. We extend those results to include fermions by taking an osp(1|2) Dirac square root of these algebras. The theory is a simple, Grassmann, two-matrix model. Its quantum action is a Chern-Simons theory whose differential is a first-quantized, quantum mechanical BRST operator. The theory is a basic ingredient for building fundamental theories of physical observables.
The study of the heat-trace expansion in noncommutative field theory has shown the existence of Moyal nonlocal Seeley-DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We show that these models can be studied in a worldline approach implemented in phase space and arrive to a master formula for the $n$-point contribution to the heat-trace expansion. This formulation could be useful in understanding some open problems in this area, as the heat-trace expansion for the noncommutative torus or the introduction of renormalizing terms in the action, as well as for generalizations to other nonlocal operators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا