Do you want to publish a course? Click here

Simulation experiments are typically conducted repeatedly during the model development process, for example, to re-validate if a behavioral property still holds after several model changes. Approaches for automatically reusing and generating simulation experiments can support modelers in conducting simulation studies in a more systematic and effective manner. They rely on explicit experiment specifications and, so far, on user interaction for initiating the reuse. Thereby, they are constrained to support the reuse of simulation experiments in a specific setting. Our approach now goes one step further by automatically identifying and adapting the experiments to be reused for a variety of scenarios. To achieve this, we exploit provenance graphs of simulation studies, which provide valuable information about the previous modeling and experimenting activities, and contain meta-information about the different entities that were used or produced during the simulation study. We define provenance patterns and associate them with a semantics, which allows us to interpret the different activities, and construct transformation rules for provenance graphs. Our approach is implemented in a Reuse and Adapt framework for Simulation Experiments (RASE) which can interface with various modeling and simulation tools. In the case studies, we demonstrate the utility of our framework for a) the repeated sensitivity analysis of an agent-based model of migration routes, and b) the cross-validation of two models of a cell signaling pathway.
Workflow support typically focuses on single simulation experiments. This is also the case for simulation based on finite element methods. If entire simulation studies shall be supported, flexible means for intertwining revising the model, collecting data, executing and analyzing experiments are required. Artifact-based workflows present one means to support entire simulation studies, as has been shown for stochastic discrete-event simulation. To adapt the approach to finite element methods, the set of artifacts, i.e., conceptual model, requirement, simulation model, and simulation experiment, and the constraints that apply are extended by new artifacts, such as geometrical model, input data, and simulation data. Artifacts, their life cycles, and constraints are revisited revealing features both types of simulation studies share and those they vary in. Also, the potential benefits of exploiting an artifact-based workflow approach are shown based on a concrete simulation study. To those benefits belong guidance to systematically conduct simulation studies, reduction of effort by automatically executing specific steps, e.g., generating and executing convergence tests, and support for the automatic reporting of provenance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا