Do you want to publish a course? Click here

We investigate the influence of stellar migration caused by minor mergers (mass ratio from 1:70 to 1:8) on the radial distribution of chemical abundances in the disks of Milky Way-like galaxies during the last four Gyr. A GPU-based pure N-body tree-code model without hydrodynamics and star formation was used. We computed a large set of mergers with different initial satellite masses, positions, and orbital velocities. We find that there is no significant metallicity change at any radius of the primary galaxy in the case of accretion of a low-mass satellite of 10$^9$ M$_{odot}$ (mass ratio 1:70) except for the special case of prograde satellite motion in the disk plane of the host galaxy. The accretion of a satellite of a mass $gtrsim3times10^9$ M$_{odot}$ (mass ratio 1:23) results in an appreciable increase of the chemical abundances at galactocentric distances larger than $sim10$ kpc. The radial abundance gradient flattens in the range of galactocentric distances from 5 to 15 kpc in the case of a merger with a satellite with a mass $gtrsim3times10^9$ M$_{odot}$. There is no significant change in the abundance gradient slope in the outer disk (from $sim15$ kpc up to 25 kpc) in any merger while the scatter in metallicities at a given radius significantly increases for most of the satellites initial masses/positions compared to the case of an isolated galaxy. This argues against attributing the break (flattening) of the abundance gradient near the optical radius observed in the extended disks of Milky Way-like galaxies only to merger-induced stellar migration.
The hierarchical galaxy formation picture suggests that super massive black holes (MBHs) observed in galactic nuclei today have grown from coalescence of massive black hole binaries (MBHB) after galaxy merging. Once the components of a MBHB become gravitationally bound, strong three-body encounters between the MBHB and stars dominate its evolution in a dry gas free environment, and change the MBHBs energy and angular momentum (semi-major axis, eccentricity and orientation). Here we present high accuracy direct N-body simulations of spherical and axisymmetric (rotating) galactic nuclei with order a million stars and two massive black holes that are initially unbound. We analyze the properties of the ejected stars due to slingshot effects from three-body encounters with the MBHB in detail. Previous studies have investigated the eccentricity and energy changes of MBHs using approximate models or Monte-Carlo three body scatterings. We find general agreement with the average results of previous semi-analytic models for spherical galactic nuclei, but our results show a large statistical variation. Our new results show many more phase space details of how the process works, and also show the influence of stellar system rotation on the process. We detect that the angle between the orbital plane of the MBHBs and that of the stellar system (when it rotates) influences the phase-space properties of the ejected stars. We also find that massive MBHB tend to switch stars with counter-rotating orbits into co-rotating orbits during their interactions.
This paper studies the formation and evolution of binary supermassive black holes (SMBHs) in rotating galactic nuclei, focusing on the role of stellar dynamics. We present the first N-body simulations that follow the evolution of the SMBHs from kiloparsec separations all the way to their final relativistic coalescence, and that can robustly be scaled to real galaxies. The N-body code includes post-Newtonian (PN) corrections to the binary equations of motion up to order 2.5; we show that the evolution of the massive binary is only correctly reproduced if the conservative 1PN and 2PN terms are included. The orbital eccentricities of the massive binaries in our simulations are often found to remain large until shortly before coalescence. This directly affects not only their orbital evolution rates, but has important consequences as well for the gravitational waveforms emitted during the relativistic inspiral. We estimate gravitational wave amplitudes when the frequencies fall inside the band of the (planned) Laser Interferometer Space Antennae (LISA). We find significant contributions -- well above the LISA sensitivity curve -- from the higher-order harmonics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا