Do you want to publish a course? Click here

We analyze if the nucleon structure of the $alpha$ decaying nucleus can be visible in the experimental bremsstrahlung spectra of the emitted photons which accompany such a decay. We develop a new formalism of the bremsstrahlung model taking into account distribution of nucleons in the $alpha$ decaying nuclear system. We conclude the following: (1) After inclusion of the nucleon structure into the model the calculated bremsstrahlung spectrum is changed very slowly for a majority of the $alpha$ decaying nuclei. However, we have observed that visible changes really exist for the $^{106}{rm Te}$ nucleus ($Q_{alpha}=4.29$ MeV, $T_{1/2}$=70 mks) even for the energy of the emitted photons up to 1 MeV. This nucleus is a good candidate for future experimental study of this task. (2) Inclusion of the nucleon structure into the model increases the bremsstrahlung probability of the emitted photons. (3) We find the following tendencies for obtaining the nuclei, which have bremsstrahlung spectra more sensitive to the nucleon structure: (a) direction to nuclei with smaller $Z$, (b) direction to nuclei with larger $Q_{alpha}$-values.
A high precision method to determine fusion in the capture of $alpha$-particles by nuclei is presented. For $alpha$-capture by $^{40}{rm Ca}$ and $^{44}{rm Ca}$, such an approach gives (1) the parameters of the $alpha$--nucleus potential and (2) fusion probabilities. This method found new parametrization and fusion probabilities and decreased the error by $41.72$ times for $alpha + ^{40}{rm Ca}$ and $34.06$ times for $alpha + ^{44}{rm Ca}$ in a description of experimental data in comparison with existing results. We show that the sharp angular momentum cutoff proposed by Glas and Mosel is a rough approximation, Wongs formula and the Hill-Wheeler approach determine the penetrability of the barrier without a correct consideration of the barrier shape, and the WKB approach gives reduced fusion probabilities. Based on our fusion probability formula, we explain the difference between experimental cross-sections for $alpha + ^{40}{rm Ca}$ and $alpha + ^{44}{rm Ca}$, which is connected with the theory of coexistence of the spherical and deformed shapes in the ground state for nuclei near the neutron magic shell $N=20$. To provide deeper insight into the physics of nuclei with the new magic number $N=26$, the cross-section for $alpha + ^{46}{rm Ca}$ is predicted for future experimental tests. The role of nuclear deformations in calculations of the fusion probabilities is analyzed.
475 - Shao-Feng Wu , Peng-Ming Zhang , 2009
We reconstruct the interaction rate between the dark matter and the holographic dark energy with the parameterized equation of states and the future event horizon as the infrared cut-off length. It is shown that the observational constraints from the 192 SNIa and BAO measurement permit the negative interaction in the wide region. Moreover, the usual phenomenological descriptions can not describe the reconstructed interaction well for many cases. The other possible interaction is also discussed.
We show that the field equation of Brans-Dicke gravity and scalar-tensor gravity can be derived as the equation of state of Rindler spacetime, where the local thermodynamic equilibrium is maintained. Our derivation implies that the effective energy can not feel the heat flow across the Rindler horizon.
In this paper we discuss the properties of the general covariant angular momentum of a five-dimensional brane-world model. Through calculating the total angular momentum of this model, we are able to analyze the properties of the total angular momentum in the inflationary RS model. We show that the space-like components of the total angular momentum of are all zero while the others are non-zero, which agrees with the results from ordinary RS model.
We analyze the general covariant energy-momentum tensor of the gravitational system in genreal five-dimensional cosmological brane-world models. Then through calculating this energy-momentum for the cosmological generalization of the Randall-Sundrum model, which includes the original RS model as the static limit, we are able to show that the weakness of the gravitation on the visible brane is a general feature of this model. This is the origin of the gauge hierarchy from a gravitational point of view. Our results are also consistent with the fact that a gravitational system has vanishing total energy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا