Do you want to publish a course? Click here

72 - Pawel Blasiak 2015
We consider a typical realization of a qubit as a single particle in two-path interferometric circuits built from phase shifters, beam splitters and detectors. This framework is often taken as a standard example illustrating various paradoxes and quantum effects, including non-locality. In this paper we show that it is possible to simulate the behaviour of such circuits in a classical manner using stochastic gates and two kinds of particles, real ones and ghosts, which interact only locally. The model has built-in limited information gain and state disturbance in measurements which are blind to ghosts. We demonstrate that predictions of the model are operationally indistinguishable from the quantum case of a qubit, and allegedly non-local effects arise only on the epistemic level of description by the agent whose knowledge is incomplete due to the restricted means of investigating the system.
We give a purely combinatorial proof of the Glaisher-Crofton identity which derives from the analysis of discrete structures generated by iterated second derivative. The argument illustrates utility of symbolic and generating function methodology of modern enumerative combinatorics and their applications to computational problems.
121 - Pawel Blasiak 2013
Contextuality lays at the heart of quantum mechanics. In the prevailing opinion it is considered as a signature of quantumness that classical theories lack. However, this assertion is only partially justified. Although contextuality is certainly true of quantum mechanics, it cannot be taken by itself as discriminating against classical theories. Here we consider a representative example of contextual behaviour, the so-called Mermin-Peres square, and present a discrete toy model of a bipartite system which reproduces the pattern of quantum predictions that leads to contradiction with the assumption of non-contextuality. This illustrates that quantum-like contextual effects have their analogues within classical models with epistemic constraints such as limited information gain and measurement disturbance.
In this paper, we present a Hopf algebra description of a bosonic quantum model, using the elementary combinatorial elements of Bell and Stirling numbers. Our objective in doing this is as follows. Recent studies have revealed that perturbative quantum field theory (pQFT) displays an astonishing interplay between analysis (Riemann zeta functions), topology (Knot theory), combinatorial graph theory (Feynman diagrams) and algebra (Hopf structure). Since pQFT is an inherently complicated study, so far not exactly solvable and replete with divergences, the essential simplicity of the relationships between these areas can be somewhat obscured. The intention here is to display some of the above-mentioned structures in the context of a simple bosonic quantum theory, i.e. a quantum theory of non-commuting operators that do not depend on space-time. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of pQFT, which we show possess a Hopf algebra structure. Our approach is based on the quantum canonical partition function for a boson gas.
227 - Pawel Blasiak 2010
Non-commutativity is ubiquitous in mathematical modeling of reality and in many cases same algebraic structures are implemented in different situations. Here we consider the canonical commutation relation of quantum theory and discuss a simple urn model of the latter. It is shown that enumeration of urn histories provides a faithful realization of the Heisenberg-Weyl algebra. Drawing on this analogy we demonstrate how the operator normal forms facilitate counting of histories via generating functions, which in turn yields an intuitive combinatorial picture of the ordering procedure itself.
Quantum physics has revealed many interesting formal properties associated with the algebra of two operators, A and B, satisfying the partial commutation relation AB-BA=1. This study surveys the relationships between classical combinatorial structures and the reduction to normal form of operator polynomials in such an algebra. The connection is achieved through suitable labelled graphs, or diagrams, that are composed of elementary gates. In this way, many normal form evaluations can be systematically obtained, thanks to models that involve set partitions, permutations, increasing trees, as well as weighted lattice paths. Extensions to q-analogues, multivariate frameworks, and urn models are also briefly discussed.
We construct a three-parameter deformation of the Hopf algebra $LDIAG$. This is the algebra that appears in an expansion in terms of Feynman-like diagrams of the {em product formula} in a simplified version of Quantum Field Theory. This new algebra is a true Hopf deformation which reduces to $LDIAG$ for some parameter values and to the algebra of Matrix Quasi-Symmetric Functions ($MQS$) for others, and thus relates $LDIAG$ to other Hopf algebras of contemporary physics. Moreover, there is an onto linear mapping preserving products from our algebra to the algebra of Euler-Zagier sums.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا