Do you want to publish a course? Click here

We generalize the definition of an exact sequence of tensor categories due to Brugui`eres and Natale, and introduce a new notion of an exact sequence of (finite) tensor categories with respect to a module category. We give three definitions of this notion and show their equivalence. In particular, the Deligne tensor product of tensor categories gives rise to an exact sequence in our sense. We also show that the dual to an exact sequence in our sense is again an exact sequence. This generalizes the corresponding statement for exact sequences of Hopf algebras. Finally, we show that the middle term of an exact sequence is semisimple if so are the other two terms.
We study actions of semisimple Hopf algebras H on Weyl algebras A over a field of characteristic zero. We show that the action of H on A must factor through a group algebra; in other words, if H acts inner faithfully on A, then H is cocommutative. The techniques used include reduction modulo a prime number and the study of semisimple cosemisimple Hopf actions on division algebras.
We consider the Hamiltonian flow on complex complete intersection surfaces with isolated singularities, equipped with the Jacobian Poisson structure. More generally we consider complete intersections of arbitrary dimension equipped with Hamiltonian flow with respect to the natural top polyvector field, which one should view as a degenerate Calabi-Yau structure. Our main result computes the coinvariants of functions under the Hamiltonian flow. In the surface case this is the zeroth Poisson homology, and our result generalizes those of Greuel, Alev and Lambre, and the authors in the quasihomogeneous and formal cases. Its dimension is the sum of the dimension of the top cohomology and the sum of the Milnor numbers of the singularities. In other words, this equals the dimension of the top cohomology of a smoothing of the variety. More generally, we compute the derived coinvariants, which replaces the top cohomology by all of the cohomology. Still more generally we compute the D-module which represents all invariants under Hamiltonian flow, which is a nontrivial extension (on both sides) of the intersection cohomology D-module, which is maximal on the bottom but not on the top. For cones over smooth curves of genus g, the extension on the top is the holomorphic half of the maximal extension.
We prove that the space of coinvariants of functions on an affine variety by a Lie algebra of vector fields whose flow generates finitely many leaves is finite-dimensional. Cases of the theorem include Poisson (or more generally Jacobi) varieties with finitely many symplectic leaves under Hamiltonian flow, complete intersections in Calabi-Yau varieties with isolated singularities under the flow of incompressible vector fields, quotients of Calabi-Yau varieties by finite volume-preserving groups under the incompressible vector fields, and arbitrary varieties with isolated singularities under the flow of all vector fields. We compute this quotient explicitly in many of these cases. The proofs involve constructing a natural D-module representing the invariants under the flow of the vector fields, which we prove is holonomic if it has finitely many leaves (and whose holonomicity we study in more detail). We give many counterexamples to naive generalizations of our results. These examples have been a source of motivation for us.
A Hopf algebra is co-Frobenius when it has a nonzero integral. It is proved that the composition length of the indecomposable injective comodules over a co-Frobenius Hopf algebra is bounded. As a consequence, the coradical filtration of a co-Frobenius Hopf algebra is finite; this confirms a conjecture by Sorin Du{a}scu{a}lescu and the first author. The proof is of categorical nature and the same result is obtained for Frobenius tensor categories of subexponential growth. A family of co-Frobenius Hopf algebras that are not of finite type over their Hopf socles is constructed, answering so in the negative another question by the same authors.
We classify braided tensor categories over C of exponential growth which are quasisymmetric, i.e., the squared braiding is the identity on the product of any two simple objects. This generalizes the classification results of Deligne on symmetric categories of exponential growth, and of Drinfeld on quasitriangular quasi-Hopf algebras. In particular, we classify braided categories of exponential growth which are unipotent, i.e., those whose only simple object is the unit object. We also classify fiber functors on such categories. Finally, using the Etingof-Kazhdan quantization theory of Poisson algebraic groups, we give a classification of coconnected Hopf algebras, i.e. of unipotent categories of exponential growth with a fiber functor.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا