Do you want to publish a course? Click here

We calculate the homotopy type of the Brown-Comenetz dual $I_2$ of the K(2)-local sphere at the prime 3 and show that there is a twisting by a non-trivial element $P$ in the exotic part of the Picard group. We give a complete characterization of $P$ as well. The main technique is to give a sequence of calculations of the homotopy groups of elements of the Picard group after smashing with the Smith-Toda complex V(1).
We calculate the rational homotopy and the K(1)-local homotopy of the K(2)-local sphere at the prime 3 and level 2. We use this to verify the chromatic splitting conjecture in this case.
173 - Paul G. Goerss 2009
This is the companion article to the Bourbaki talk of the same name given in March 2009. The main theme of the talk and the article is to explain the interplay between homotopy theory and algebraic geometry through the Hopkins-Miller-Lurie theorem on topological modular forms, from which we learn that the Deligne-Mumford moduli stack for elliptic curves is canonically realized as an object in derived algebraic geometry.
94 - Paul G. Goerss 2009
I discuss the problem of realizing families of complex orientable homology theories as families of commutative ring spectra, including a recent result of Jacob Lurie emphasizing the role of p-divisible groups.
107 - Paul G. Goerss 2008
These are notes for a five lecture series intended to uncover large-scale phenomena in the homotopy groups of spheres using the Adams-Novikov Spectral Sequence. The lectures were given in Strasbourg, May 7-11, 2007.
296 - Paul G. Goerss 2008
The central aim of this monograph is to provide decomposition results for quasi-coherent sheaves on the moduli stack of one-dimensional formal groups. These results will be based on the geometry of the stack itself, particularly the height filtration and an analysis of the formal neighborhoods of the geometric points. The main theorems are algebraic chromatic convergence results and fracture square decompositions. There is a major technical hurdle in this story, as the moduli stack of formal groups does not have the finitness properties required of an algebraic stack as usually defined. This is not a conceptual problem, but in order to be clear on this point and to write down a self-contained narrative, I have included a great deal of discussion of the geometry of the stack itself, giving various equivalent descriptions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا