Do you want to publish a course? Click here

Heterostructures including the members of the 6.1{AA} semiconductor family (AlSb, GaSb, and InAs) are used in infrared optoelectronic devices as well as a variety of other applications. Short-period superlattices of these materials are also of interest for creating composite materials with designer infrared dielectric functions. The conditions needed to create sharp InAs/GaSb and InAs/AlSb interfaces are well known, but the AlSb/GaSb interface is much less well-understood. In this article, we test a variety of interventions designed to improve interface sharpness in AlSb/GaSb short-period superlattices. These interventions include substrate temperature, III:Sb flux ratio, and the use of a bismuth surfactant. Superlattices are characterized by high-resolution x-ray diffraction and infrared spectroscopy. We find that AlSb/GaSb short-period superlattices have a wide growth window over which sharp interfaces can be obtained.
Semiconductor-based layered hyperbolic metamaterials (HMMs) house high-wavevector volume plasmon polariton (VPP) modes in the infrared spectral range. VPP modes have successfully been exploited in the weak-coupling regime through the enhanced Purcell effect. In this paper, we experimentally demonstrate strong coupling between the VPP modes in a semiconductor HMM and the intersubband transition of epitaxially-embedded quantum wells. We observe clear anticrossings in the dispersion curves for the zeroth-, first-, second-, and third-order VPP modes, resulting in upper and lower polariton branches for each mode. This demonstration sets the stage for the creation of novel infrared optoelectronic structures combining HMMs with embedded epitaxial emitter or detector structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا