Do you want to publish a course? Click here

We report a polarized Raman study of Weyl semimetal TaAs. We observe all the optical phonons, with energies and symmetries consistent with our first-principles calculations. We detect additional excitations assigned to multiple-phonon excitations. These excitations are accompanied by broad peaks separated by 140~cm$^{-1}$ that are also most likely associated with multiple-phonon excitations. We also noticed a sizable B$_1$ component for the spectral background, for which the origin remains unclear.
267 - D. Chen , P. Richard , Z.-D. Song 2015
We have performed polarized Raman scattering measurements on the newly discovered superconductor Ta$_{4}$Pd$_{3}$Te$_{16}$ ($T_c = 4.6$ K). We observe twenty-eight out of thirty-three Raman active modes, with frequencies in good accordance with first-principles calculations. Although most of the phonons observed vary only slightly with temperature and do not exhibit any asymmetric profile that would suggest strong electron-phonon coupling, the linewidth of the A$_{g}$ phonon mode at 89.9 cm$^{-1}$ shows an unconventional increase with temperature decreasing, which is possibly due to a charge-density-wave transition or the emergence of charge-density-wave fluctuations below a temperature estimated to fall in the 140-200 K range.
434 - W.-L. Zhang , P. Richard , H. Ding 2014
We use polarization-resolved Raman spectroscopy to study the anisotropy of the electronic characteristics of the iron-pnictide parent compounds $A$Fe$_{2}$As$_{2}$ ($A$~=~Eu, Sr). We demonstrate that above the structural phase transition at Ts the dynamical anisotropic properties of the 122 compounds are governed by the emergence of $xy$-symmetry critical collective mode foretelling a condensation into a state with spontaneously broken four-fold symmetry at a temperature $T^{*}$. However, the modes critical slowing down is intervened by a structural transition at Ts, about 80~K above $T^{*}$, resulting in an anisotropic density wave state.
128 - P. Zhang , P. Richard , N. Xu 2014
We used emph{in-situ} potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe$_{0.55}$Se$_{0.45}$. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe$_{2-x}$Se$_2$ compound.
115 - P. Zhang , P. Richard , T. Qian 2013
We report the observation by angle-resolved photoemission spectroscopy of an impurity state located inside the superconducting gap of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and vanishing above the superconducting critical temperature, for which the spectral weight is confined in momentum space near the Fermi wave vector positions. We demonstrate, supported by theoretical simulations, that this in-gap state originates from weak non-magnetic scattering between bands with opposite sign of the superconducting gap phase. This weak scattering, likely due to off-plane Ba/K disorders, occurs mostly among neighboring Fermi surfaces, suggesting that the superconducting gap phase changes sign within holelike (and electronlike) bands. Our results impose severe restrictions on the models promoted to explain high-temperature superconductivity in these materials.
74 - P. Richard , C. Capan , J. Ma 2013
We used angle-resolved photoemission spectroscopy to investigate the electronic structure of EuFe$_2$As$_2$, EuFe$_2$As$_{1.4}$P$_{0.6}$ and EuFe$_2$P$_2$. We observed doubled core level peaks associated to the pnictide atoms, which are related to a surface state. Nevertheless, strong electronic dispersion along the $c$ axis, especially pronounced in EuFe$_2$P$_2$, is observed for at less one band, thus indicated that the Fe states, albeit probably affected at the surface, do not form pure two-dimensional surface states. However, this latter material shows reduced spectral weight near the Fermi level as compared to EuFe$_2$As$_2$ and EuFe$_2$As$_{1.4}$P$_{0.6}$. An anomalous jump is also found in the electronic states associated with the Eu$^{2+}$ $f$ states in EuFe$_2$P$_2$.
139 - N. Xu , P. Richard , X.-P. Wang 2012
We used high-energy resolution angle-resolved photoemission spectroscopy to extract the momentum dependence of the superconducting gap of Ru-substituted Ba(Fe$_{0.75}$Ru$_{0.25}$)$_2$As$_2$ ($T_c = 15$ K). Despite a strong out-of-plane warping of the Fermi surface, the magnitude of the superconducting gap observed experimentally is nearly isotropic and independent of the out-of-plane momentum. More precisely, we respectively observed 5.7 meV and 4.5 meV superconducting gaps on the inner and outer $Gamma$-centered hole Fermi surface pockets, whereas a 4.8 meV gap is recorded on the M-centered electron Fermi surface pockets. Our results are consistent with the $J_1-J_2$ model with a dominant antiferromagnetic exchange interaction between the next-nearest Fe neighbors.
452 - N. Xu , T. Qian , P. Richard 2012
We report a systematic angle-resolved photoemission spectroscopy study on Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$ for a wide range of Ru concentrations (0.15 $leq$ emph{x} $leq$ 0.74). We observed a crossover from two-dimension to three-dimension for some of the hole-like Fermi surfaces with Ru substitution and a large reduction in the mass renormalization close to optimal doping. These results suggest that isovalent Ru substitution has remarkable effects on the low-energy electron excitations, which are important for the evolution of superconductivity and antiferromagnetism in this system.
242 - Z.-H. Liu , P. Richard , N. Xu 2012
We report a comprehensive angle-resolved photoemission spectroscopy study of the tridimensional electronic bands in the recently discovered Fe selenide superconductor (Tl,Rb)$_y$Fe$_{2-x}$Se$_2$ ($T_c=32$ K). We determined the orbital characters and the $k_z$ dependence of the low energy electronic structure by tuning the polarization and the energy of the incident photons. We observed a small 3D electron Fermi surface pocket near the Brillouin zone center and a 2D like electron Fermi surface pocket near the zone boundary. The photon energy dependence, the polarization analysis and the local-density approximation calculations suggest a significant contribution from the Se 4$p_z$ and Fe 3$d_{xy}$ orbitals to the small electron pocket. We argue that the emergence of Se 4$p_z$ states might be the cause of the different magnetic properties between Fe chalcogenides and Fe pnictides.
In order to determine the orbital characters on the various Fermi surface pockets of the Fe-based superconductors Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ and FeSe$_{0.45}$Te$_{0.55}$, we introduce a method to calculate photoemission matrix elements. We compare our simulations to experimental data obtained with various experimental configurations of beam orientation and light polarization. We show that the photoemission intensity patterns revealed from angle-resolved photoemission spectroscopy measurements of Fermi surface mappings and energy-momentum plots along high-symmetry lines exhibit asymmetries carrying precious information on the nature of the states probed, information that is destroyed after the data symmetrization process often performed in the analysis of angle-resolved photoemission spectroscopy data. Our simulations are consistent with Fermi surfaces originating mainly from the $d_{xy}$, $d_{xz}$ and $d_{yz}$ orbitals in these materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا