Do you want to publish a course? Click here

Lobe-dominated radio-loud (LD RL) quasars occupy a restricted domain in the 4D Eigenvector 1 (4DE1) parameter space which implies restricted geometry/physics/kinematics for this subclass compared to the radio-quiet (RQ) majority of quasars. We discuss how this restricted domain for the LD RL parent population supports the notion for a RQ-RL dichotomy among Type 1 sources. 3C 57 is an atypical RL quasar that shows both uncertain radio morphology and falls in a region of 4DE1 space where RL quasars are rare. We present new radio flux and optical spectroscopic measures designed to verify its atypical optical/UV spectroscopic behaviour and clarify its radio structure. The former data confirms that 3C 57 falls off the 4DE1 quasar main sequence with both extreme optical FeII emission (R_{FeII} ~ 1) and a large CIV 1549 profile blueshift (~ -1500 km/s). These parameter values are typical of extreme Population A sources which are almost always RQ. New radio measures show no evidence for flux change over a 50+ year timescale consistent with compact steep-spectrum (CSS or young LD) over core-dominated morphology. In the 4DE1 context where LD RL are usually low L/L_{Edd} quasars we suggest that 3C 57 is an evolved RL quasar (i.e. large Black Hole mass) undergoing a major accretion event leading to a rejuvenation reflected by strong FeII emission, perhaps indicating significant heavy metal enrichment, high bolometric luminosity for a low redshift source and resultant unusually high Eddington ratio giving rise to the atypical CIV 1549.
The broad MgII doublet has been much studied in connection with its potentially important role as a virial estimator of black hole mass in high redshift quasars. An important task is therefore identification of any line components likely related to broadening by non-virial motions. High s/n median composite spectra (binned in the 4D eigenvector 1 context of Sulentic et al. 2007) were constructed for the brightest 680 SDSS DR7 quasars in the 0.4 < z < 0.75 range where both MgII 2800 and Hbeta are recorded in the same spectra. Composite spectra representing 90% of the quasars confirm previous findings that FWHM(MgII 2800) is about 20% narrower than FWHM(Hbeta). The situation is clearly different for the most extreme (Population A) sources which are the highest Eddington radiators in the sample. In the median spectra of these sources FWHM MgII 2800 is equal to or greater than FWHM(Hbeta) and shows a significant blueshift relative to Hbeta. We interpret the MgII 2800 blueshift as the signature of a radiation-driven wind or outflow in the highest accreting quasars. In this interpretation the MgII 2800 line width -- affected by blueshifted emission -- is unsuitable for virial mass estimation in ~ 10% of quasars.
One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole system in their cores. Here we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically applied for spectroscopic binary stars we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for an eccentric, sub-parsec Keplerian orbit of a 15.9-year period. The flux maximum in the lightcurve correspond to the approaching phase of a secondary component towards the observer. According to the obtained results we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into black hole mass growth process.
412 - J. W. Sulentic 2012
We test the recent claim by Hu et al. (2008) that FeII emission in Type 1 AGN shows a systematic redshift relative to the local source rest frame and broad-line Hbeta. We compile high s/n median composites using SDSS spectra from both the Hu et al. sample and our own sample of the 469 brightest DR5 spectra. Our composites are generated in bins of FWHM Hbeta and FeII strength as defined in our 4D Eigenvector 1 (4DE1) formalism. We find no evidence for a systematic FeII redshift and consistency with previous assumptions that FeII shift and width (FWHM) follow Hbeta shift and FWHM in virtually all sources. This result is consistent with the hypothesis that FeII emission (quasi-ubiquitous in type 1 sources) arises from a broad-line region with geometry and kinematics the same as that producing the Balmer lines.
We describe a 4D Eigenvector 1 (4DE1) space that serves as a surrogate H-R diagram for quasars. It provides a context for describing and unifying differences between all broad line AGN. Quasar spectra can be averaged in a non-random way using 4DE1 just as stellar spectra can be averaged non-randomly within the OBAFGKM classification sequence. We find that quasars with FWHM H_beta less than (Population A) and greater than (Population B) 4000 km/s show many significant differences that may point to an actual dichotomy. Broad line profile measures and fits reenforce the idea of a dichotomy because they are fundamentally different: Pop.A - Lorentzian-like and Pop.B - double Gaussian. The differences have implications both for BH mass estimation and for inferences about source structure and kinematics.
Environmental research aimed at monitoring and predicting O2 depletion is still lacking or in need of improvement, in spite of many attempts to find a relation between atmospheric gas content and climate variability. The aim of the present project is to determine accurate historical sequences of the atmospheric O2 depletion by using the telluric lines present in stellar spectra. A better understanding of the role of oxygen in atmospheric thermal equilibrium may become possible if high-resolution spectroscopic observations are carried out for different airmasses, in different seasons, for different places, and if variations are monitored year by year. The astronomical spectroscopic technique involves mainly the investigation of the absorption features in high-resolution stellar spectra, but we are also considering whether accurate measures of the atmospheric O2 abundances can be obtained from medium and low resolution stellar spectra.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا