Do you want to publish a course? Click here

Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been thought to not follow the MZ relation, because they inherit the metallicity of the more massive parent galaxies. We present chemical evolution models to investigate if TDGs that formed at very high redshifts, where the metallicity of their parent galaxy was very low, can produce the observed MZ relation. Assuming that galaxy interactions were more frequent in the denser high-redshift universe, TDGs could constitute an important contribution to the dwarf galaxy population. The survey of chemical evolution models of TDGs presented here captures for the first time an initial mass function (IMF) of stars that is dependent on both the star formation rate and the gas metallicity via the integrated galactic IMF (IGIMF) theory. As TDGs form in the tidal debris of interacting galaxies, the pre-enrichment of the gas, an underlying pre-existing stellar population, infall, and mass dependent outflows are considered. The models of young TDGs that are created in strongly pre-enriched tidal arms with a pre-existing stellar population can explain the measured abundance ratios of observed TDGs. The same chemical evolution models for TDGs, that form out of gas with initially very low metallicity, naturally build up the observed MZ relation. The modelled chemical composition of ancient TDGs is therefore consistent with the observed MZ relation of satellite galaxies.
172 - S. Recchi IfA , Vienna 2014
Standard analytical chemical evolution modelling of galaxies has been assuming the stellar initial mass function (IMF) to be invariant and fully sampled allowing fractions of massive stars to contribute even in dwarf galaxies with very low star formation rates (SFRs). Recent observations show the integrated galactic initial mass function (IGIMF) of stars, i.e. the galaxy-wide IMF, to become systematically top-heavy with increasing SFR. This has been predicted by the IGIMF theory, which is here used to develop the analytical theory of the chemical evolution of galaxies. This theory is non-linear and requires the iterative solution of implicit integral equations due to the dependence of the IGIMF on the metallicity and on the SFR. It is shown that the mass-metallicity relation of galaxies emerges naturally, although at low masses the theoretical predictions overestimate the observations by 0.3--0.4 dex. A good agreement with the observation can be obtained only if gas flows are taken into account. In particular, we are able to reproduce the mass--metallicity relation observed by Lee et al. (2006) with modest amounts of infall and with an outflow rate which decreases as a function of the galactic mass. The outflow rates required to fit the data are considerably smaller than required in models with invariant IMFs.
Polar ring galaxies are ideal objects with which to study the three-dimensional shapes of galactic gravitational potentials since two rotation curves can be measured in two perpendicular planes. Observational studies have uncovered systematically larger rotation velocities in the extended polar rings than in the associated host galaxies. In the dark matter context, this can only be explained through dark halos that are systematically flattened along the polar rings. Here, we point out that these objects can also be used as very effective tests of gravity theories, such as those based on Milgromian dynamics (MOND). We run a set of polar ring models using both Milgromian and Newtonian dynamics to predict the expected shapes of the rotation curves in both planes, varying the total mass of the system, the mass of the ring with respect to the host, as well as the size of the hole at the center of the ring. We find that Milgromian dynamics not only naturally leads to rotation velocities being typically higher in the extended polar rings than in the hosts, as would be the case in Newtonian dynamics without dark matter, but that it also gets the shape and amplitude of velocities correct. Milgromian dynamics thus adequately explains this particular property of polar ring galaxies.
A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters. It is known that some of these stars are runaways and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements or whose low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction with the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical wavelengths only because they are runaways, while their cousins residing in the deeply embedded parent clusters might still remain totally obscured. The main conclusion of our study is that there is no significant evidence whatsoever in support of the in situ proposal on the origin of massive stars.
By analysing models of the young massive cluster R136 in 30 Doradus, set-up using the herewith introduced and publicly made available code McLuster, we investigate and compare different methods for detecting and quantifying mass segregation and substructure in non-seeing limited N-body data. For this purpose we generate star cluster models with different degrees of mass segregation and fractal substructure and analyse them. We quantify mass segregation by measuring, from the projected 2d model data, the mass function slope in radial annuli, by looking for colour gradients in radial colour profiles, by measuring Allisons Lambda parameter, and by determining the local stellar surface density around each star. We find that these methods for quantifying mass segregation often produce ambiguous results. Most reliable for detecting mass segregation is the mass function slope method, whereas the colour gradient method is the least practical in an R136-like configuration. The other two methods are more sensitive to low degrees of mass segregation but are computationally much more demanding. We also discuss the effect of binaries on these measures. Moreover, we quantify substructure by looking at the projected radial stellar density profile, by comparing projected azimuthal stellar density profiles, and by determining Cartwright & Whitworths Q parameter. We find that only high degrees of substructure affect the projected radial density profile, whereas the projected azimuthal density profile is very sensitive to substructure. The Q parameter is also sensitive to substructure but its absolute value shows a dependence on the radial density gradient of the cluster and is strongly influenced by binaries. (abridged)
118 - P. Assmann 2011
It is widely believed that star clusters form with low star formation efficiencies. With the onset of stellar winds by massive stars or finally when the first super nova blows off, the residual gas is driven out of the embedded star cluster. Due to this fact a large amount, if not all, of the stars become unbound and disperse in the gravitational potential of the galaxy. In this context, Kroupa (2002) suggested a new mechanism for the emergence of thickened Galactic discs. Massive star clusters add kinematically hot components to the galactic field populations, building up in this way, the Galactic thick disc as well. In this work we perform, for the first time, numerical simulations to investigate this scenario for the formation of the galactic discs of the Milky Way. We find that a significant kinematically hot population of stars may be injected into the disk of a galaxy such that a thick disk emerges. For the MW the star clusters that formed the thick disk must have had masses of about 10^6 Msol.
In the last decade, extended stellar clusters with masses in the range from a few 10^4 to 10^8 M_sun have been found in various types of galaxies in different environments. Objects with masses comparable to normal globular clusters (GCs) are called extended clusters (ECs), while objects with masses in the dwarf galaxy regime are called ultra-compact dwarf galaxies (UCDs). In heavily interacting galaxies star clusters tend to form in larger conglomerations called star cluster complexes (CCs). In this work we systematically scan a suitable parameter space for CCs and perform numerical simulations to study their further fate. The varied sizes and masses of the CCs cover a matrix of 5x6 values with CC Plummer radii between 10 - 160 pc and CC masses between 10^5.5 - 10^8 M_sun, which are consistent with observed CC parameters. The CCs of the parametric study are on orbits with distances between 20 kpc and 60 kpc. In addition, we studied also the evolution of CCs on a circular orbit at a distance of 60 kpc to verify that also extremely extended ECs and UCDs can be explained by our formation scenario. All 54 simulations end up with stable merger objects, wherein 26 to 97% of the initial CC mass is bound. The objects show a general trend of increasing effective radii with increasing mass. Despite the large range of input Plummer radii of the CCs (10 to 160 pc) the effective radii of the merger objects are constrained to values between 10 and 20 pc at the low mass end and to values between 15 and 55 pc at the high mass end. The structural parameters of the models are comparable to those of the observed ECs and UCDs. The results of the circular orbits demonstrate that even very extended objects like the M31 ECs found by Huxor in 2005 and the very extended (r_eff > 80 pc), high-mass UCDs can be explained by merged cluster complexes in regions with low gravitational fields at large distances.
Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be alien stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.
The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (~100 km/s) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birth places at the very beginning of their parent clusters dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach however is complicated by the large distance to the LMC, which makes accurate proper motion measurements difficult. We use an alternative approach for solving the problem, based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion and thereby to determine their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars which were suggested in the literature as candidate runaway stars. Using archival (Spitzer Space Telescope) data, we found a bow shock associated with one of our program stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ~120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star forming complex.
Based on our recent work on tidal tails of star clusters (Kuepper et al. 2009) we investigate star clusters of a few 10^4 Msun by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of $N$-body computations of star clusters on various orbits within a realistic tidal field to study the evolution of these profiles with time, and ongoing cluster dissolution From the velocity dispersion profiles we find that the population of potential escapers, i.e. energetically unbound stars inside the Jacobi radius, dominates clusters at radii above about 50% of the Jacobi radius. Beyond 70% of the Jacobi radius nearly all stars are energetically unbound. The velocity dispersion therefore significantly deviates from the predictions of simple equilibrium models in this regime. We furthermore argue that for this reason this part of a cluster cannot be used to detect a dark matter halo or deviations from Newtonian gravity. By fitting templates to the about 10^4 computed surface density profiles we estimate the accuracy which can be achieved in reconstructing the Jacobi radius of a cluster in this way. We find that the template of King (1962) works well for extended clusters on nearly circular orbits, but shows significant flaws in the case of eccentric cluster orbits. This we fix by extending this template with 3 more free parameters. Our template can reconstruct the tidal radius over all fitted ranges with an accuracy of about 10%, and is especially useful in the case of cluster data with a wide radial coverage and for clusters showing significant extra-tidal stellar populations. No other template that we have tried can yield comparable results over this range of cluster conditions. All templates fail to reconstruct tidal parameters of concentrated clusters, however. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا