Do you want to publish a course? Click here

Originally, the Hubbard model has been derived for describing the behaviour of strongly-correlated electrons in solids. However, since over a decade now, variations of it are also routinely being implemented with ultracold atoms in optical lattices. We review some of the rich literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighboring sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation on the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, also the effects related to higher Bloch bands become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher $p$-orbitals, as well as models that couple dynamically spin and orbital degrees of freedom. Finally, we review mean-field nonlinear-Schrodinger models of the Salerno type that share with the non-standard Hubbard models the nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of the consideration. We conclude by listing some future open problems.
Recently, it has become apparent that, when the interactions between polar molecules in optical lattices becomes strong, the conventional description using the extended Hubbard model has to be modified by additional terms, in particular a density-dependent tunneling term. We investigate here the influence of this term on the ground-state phase diagrams of the two dimensional extended Bose-Hubbard model. Using Quantum Monte Carlo simulations, we investigate the changes of the superfluid, supersolid, and phase-separated parameter regions in the phase diagram of the system. By studying the interplay of the density-dependent hopping with the usual on-site interaction U and nearest-neighbor repulsion V, we show that the ground-state phase diagrams differ significantly from the ones that are expected from the standard extended Bose-Hubbard model. However we find no indication of pair-superfluid behavior in this two dimensional square lattice study in contrast to the one-dimensional case.
We study the ground-state properties of ultracold bosons in an optical lattice in the regime of strong interactions. The system is described by a non-standard Bose-Hubbard model with both occupation-dependent tunneling and on-site interaction. We find that for sufficiently strong coupling the system features a phase-transition from a Mott insulator with one particle per site to a superfluid of spatially extended particle pairs living on top of the Mott background -- instead of the usual transition to a superfluid of single particles/holes. Increasing the interaction further, a superfluid of particle pairs localized on a single site (rather than being extended) on top of the Mott background appears. This happens at the same interaction strength where the Mott-insulator phase with 2 particles per site is destroyed completely by particle-hole fluctuations for arbitrarily small tunneling. In another regime, characterized by weak interaction, but high occupation numbers, we observe a dynamical instability in the superfluid excitation spectrum. The new ground state is a superfluid, forming a 2D slab, localized along one spatial direction that is spontaneously chosen.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا