Do you want to publish a course? Click here

We use a combination of a cosmological N-body simulation of the concordance Lambda cold dark matter (LCDM) paradigm and a semi-analytic model of galaxy formation to investigate the spin development of central supermassive black holes (BHs) and its relation to the BH host galaxy properties. In order to compute BH spins, we use the alpha-model of Shakura & Sunyaev and consider the King et al. warped disc alignment criterion. The orientation of the accretion disc is inferred from the angular momentum of the source of accreted material, which bears a close relationship to the large-scale structure in the simulation. We find that the final BH spin depends almost exclusively on the accretion history and only weakly on the warped disc alignment. The main mechanisms of BH spin-up are found to be gas cooling processes and disc instabilities, a result that is only partially compatible with Monte-Carlo models where the main spin-up mechanisms are major mergers and disc instabilities; the latter results are reproduced when implementing randomly oriented accretion discs in our model. Regarding the BH population, we find that more massive BHs, which are hosted by massive ellipticals, have higher spin values than less-massive BHs, hosted by spiral galaxies. We analyse whether gas accretion rates and BH spins can be used as tracers of the radio loudness of active galactic nuclei (AGN). We find that the current observational indications of an increasing trend of radio-loud AGN fractions with stellar and BH mass can be easily obtained when placing lower limits on the BH spin, with a minimum influence from limits on the accretion rates; a model with random accretion disc orientations is unable to reproduce this trend. (ABRIDGED)
145 - Nelson D. Padilla 2008
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41+-0.03 for Mr ~ -18 ellipticals, and 0.76+-0.04 for Mr ~-22.5 ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth. There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS-DR6 are consistent with flat disks with a mean and dispersion of thickness to diameter ratio of (21+-2)%, and a face-on ellipticity, e, of ln(e)=-2.33+-0.79. Not including the effects of dust in the model leads to disks that are systematically rounder by up to 60%. More luminous spiral galaxies tend to have thicker and rounder disks than lower-luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies. The marginalised value of the edge-on r-band dust extinction E_0 in spiral galaxies is E_0 ~ 0.45 magnitudes for galaxies of median colours, increasing to E_0=1 magnitudes for g-r>0.9 and E_0=1.9 for the luminous and most compact galaxies, with half-light radii <2kpc/h.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا