Do you want to publish a course? Click here

Let $G$ be a connected reductive group over the non-archime-dean local field $F$ and let $pi$ be a supercuspidal representation of $G(F)$. The local Langlands conjecture posits that to such a $pi$ can be attached a parameter $L(pi)$, which is an equivalence class of homomorphisms from the Weil-Deligne group with values in the Langlands $L$-group ${}^LG$ over an appropriate algebraically closed field $C$ of characteristic $0$. When $F$ is of positive characteristic $p$ then Genestier and Lafforgue have defined a parameter, $L^{ss}(pi)$, which is a homomorphism $W_F ra {}^LG(C)$ that is {it semisimple} in the sense that, if the image of $L^{ss}(pi)$, intersected with the Langlands dual group $hat{G}(C)$, is contained in a parabolic subgroup $P subset hat{G}(C)$, then it is contained in a Levi subgroup of $P$. If the Frobenius eigenvalues of $L^{ss}(pi)$ are pure in an appropriate sense, then the local Langlands conjecture asserts that the image of $L^{ss}(pi)$ is in fact {it irreducible} -- its image is contained in no proper parabolic $P$. In particular, unless $G = GL(1)$, $L^{ss}(pi)$ is ramified: it is non-trivial on the inertia subgroup $I_F subset W_F$. In this paper we prove, at least when $G$ is split and semisimple, that this is the case provided $pi$ can be obtained as the induction of a representation of a compact open subgroup $U subset G(F)$, and provided the constant field of $F$ is of order greater than $3$. Conjecturally every $pi$ is compactly induced in this sense, and the property was recently proved by Fintzen to be true as long as $p$ does not divide the order of the Weyl group of $G$. The proof is an adaptation of the globalization method of cite{GLo} when the base curve is $PP^1$, and a simple application of Delignes Weil II.
We show that any embedding $mathbb{R}^d to mathbb{R}^{2d+rho(d)-1}$ inscribes a trapezoid or maps three points to a line, where $rho(d)$ denotes the Radon-Hurwitz function. This strengthens earlier results on the nonexistence of affinely $3$-regular maps for infinitely many dimensions $d$ by further constraining four coplanar points to be the vertices of a trapezoid.
We introduce the notion of coupled embeddability, defined for maps on products of topological spaces. We use known results for nonsingular biskew and bilinear maps to generate simple examples and nonexamples of coupled embeddings. We study genericity properties for coupled embeddings of smooth manifolds, extend the Whitney embedding theorems to statements about coupled embeddability, and we discuss a Haefliger-type result for coupled embeddings. We relate the notion of coupled embeddability to the $mathbb{Z}/2$-coindex of embedding spaces, recently introduced and studied by the authors. With a straightforward generalization of these results, we obtain strong obstructions to the existence of coupled embeddings in terms of the combinatorics of triangulations. In particular, we generalize nonembeddability results for certain simplicial complexes to sharp coupled nonembeddability results for certain pairs of simplicial complexes.
Given a space X we study the topology of the space of embeddings of X into $mathbb{R}^d$ through the combinatorics of triangulations of X. We give a simple combinatorial formula for upper bounds for the largest dimension of a sphere that antipodally maps into the space of embeddings. This result summarizes and extends results about the nonembeddability of complexes into $mathbb{R}^d$, the nonexistence of nonsingular bilinear maps, and the study of embeddings into $mathbb{R}^d$ up to isotopy, such as the chirality of spatial graphs.
We study the geodesic complexity of the ordered and unordered configuration spaces of graphs in both the $ell_1$ and $ell_2$ metrics. We determine the geodesic complexity of the ordered two-point $varepsilon$-configuration space of any star graph in both the $ell_1$ and $ell_2$ metrics and of the unordered two-point configuration space of any tree in the $ell_1$ metric, by finding explicit geodesics from any pair to any other pair, and arranging them into a minimal number of continuously-varying families. In each case the geodesic complexity matches the known value of the topological complexity.
129 - Michael Harris 2020
The conjecture that every elliptic curve with rational coefficients is a so-called modular curve -- since 2000 a theorem due in large part to Andrew Wiles and, in complete generality, to Breuil-Conrad-Diamond-Taylor -- has been known by various names: Weil Conjecture, Taniyama-Weil Conjecture, Shimura-Taniyama-Weil Conjecture, or Shimura-Taniyama Conjecture, among others. The question of the authorship of this conjecture, one of whose corollaries is Fermats Last Theorem, has been the subject of a priority dispute that has often been quite bitter, but the principles behind one attribution or another have (almost) never been made explicit. The author proposes a reading inspired in part by the virtue ethics of Alasdair MacIntyre, analyzing each of the attributions as the expression of a specific value, or virtue, appreciated by the community of mathematicians.
218 - Michael Harrison 2019
A fibration of $mathbb{R}^3$ by oriented lines is given by a unit vector field $V : mathbb{R}^3 to S^2$, for which all of the integral curves are oriented lines. A line fibration is called skew if no two fibers are parallel. Skew fibrations have been the focus of recent study, in part due to their close relationships with great circle fibrations of $S^3$ and with tight contact structures on $mathbb{R}^3$. Both geometric and topological classifications of the space of skew fibrations have appeared; these classifications rely on certain rigid geometric properties exhibited by skew fibrations. Here we study these properties for line fibrations which are not necessarily skew, and we offer some partial answers to the question: in what sense do nonskew fibrations look and behave like skew fibrations? We develop and utilize a technique, called the parallel plane pushoff, for studying nonskew fibrations. In addition, we summarize the known relationship between line fibrations and contact structures, and we extend these results to give a complete correspondence. Finally, we develop a technique for generating nonskew fibrations and offer a number of examples.
245 - Michael Harris 2019
The Ichino-Ikeda conjecture, and its generalization to unitary groups by N. Harris, has given explicit formulas for central critical values of a large class of Rankin-Selberg tensor products. Although the conjecture is not proved in full generality, there has been considerable progress, especially for $L$-values of the form $L(1/2,BC(pi) times BC(pi))$, where $pi$ and $pi$ are cohomological automorphic representations of unitary groups $U(V)$ and $U(V)$, respectively. Here $V$ and $V$ are hermitian spaces over a CM field, $V$ of dimension $n$, $V$ of codimension $1$ in $V$, and $BC$ denotes the twisted base change to $GL(n) times GL(n-1)$. This paper contains the first steps toward generalizing the construction of my paper with Tilouine on triple product $L$-functions to this situation. We assume $pi$ is a holomorphic representation and $pi$ varies in an ordinary Hida family (of antiholomorphic forms). The construction of the measure attached to $pi$ uses recent work of Eischen, Fintzen, Mantovan, and Varma.
We construct a Langlands parameterization of supercuspidal representations of $G_2$ over a $p$-adic field. More precisely, for any finite extension $K / QQ_p$ we will construct a bijection [ CL_g : CA^0_g(G_2,K) rightarrow CG^0(G_2,K) ] from the set of generic supercuspidal representations of $G_2(K)$ to the set of irreducible continuous homomorphisms $rho : W_K to G_2(CC)$ with $W_K$ the Weil group of $K$. The construction of the map is simply a matter of assembling arguments that are already in the literature, together with a previously unpublished theorem of G. Savin on exceptional theta correspondences, included as an appendix. The proof that the map is a bijection is arithmetic in nature, and specifically uses automorphy lifting theorems. These can be applied thanks to a recent result of Hundley and Liu on automorphic descent from $GL(7)$ to $G_2$.
We study a K3 surface, which appears in the two-loop mixed electroweak-quantum chromodynamic virtual corrections to Drell--Yan scattering. A detailed analysis of the geometric Picard lattice is presented, computing its rank and discriminant in two independent ways: first using explicit divisors on the surface and then using an explicit elliptic fibration. We also study in detail the elliptic fibrations of the surface and use them to provide an explicit Shioda--Inose structure. Moreover, we point out the physical relevance of our results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا