Do you want to publish a course? Click here

Mott physics is characterized by an interaction-driven metal-to-insulator transition in a partially filled band. In the resulting insulating state, antiferromagnetic orders of the local moments typically develop, but in rare situations no long-range magnetic order appears, even at zero temperature, rendering the system a quantum spin liquid. A fundamental and technologically critical question is whether one can tune the underlying energetic landscape to control both metal-to-insulator and Neel transitions, and even stabilize latent metastable phases, ideally on a platform suitable for applications. Here we demonstrate how to achieve this in ultrathin films of NdNiO3 with various degrees of lattice mismatch, and report on the quantum critical behaviours not reported in the bulk by transport measurements and resonant X-ray spectroscopy/scattering. In particular, on the decay of the antiferromagnetic Mott insulating state into a non-Fermi liquid, we find evidence of a quantum metal-to-insulator transition that spans a non-magnetic insulating phase.
The expected phenomenology of non-interacting topological band insulators (TBI) is now largely theoretically understood. However, the fate of TBIs in the presence of interactions remains an active area of research with novel, interaction-driven topological states possible, as well as new exotic magnetic states. In this work we study the magnetic phases of an exchange Hamiltonian arising in the strong interaction limit of a Hubbard model on the honeycomb lattice whose non-interacting limit is a two-dimensional TBI recently proposed for the layered heavy transition metal oxide compound, (Li,Na)$_2$IrO$_3$. By a combination of analytical methods and exact diagonalization studies on finite size clusters, we map out the magnetic phase diagram of the model. We find that strong spin-orbit coupling can lead to a phase transition from an antiferromagnetic Neel state to a spiral or stripy ordered state. We also discuss the conditions under which a quantum spin liquid may appear in our model, and we compare our results with the different but related Kitaev-Heisenberg-$J_2$-$J_3$ model which has recently been studied in a similar context.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا