Do you want to publish a course? Click here

We analyze the critical properties of the three-dimensional Ising model with linear parallel extended defects. Such a form of disorder produces two distinct correlation lengths, a parallel correlation length $xi_parallel$ in the direction along defects, and a perpendicular correlation length $xi_perp$ in the direction perpendicular to the lines. Both $xi_parallel$ and $xi_perp$ diverge algebraically in the vicinity of the critical point, but the corresponding critical exponents $ u_parallel$ and $ u_perp$ take different values. This property is specific for anisotropic scaling and the ratio $ u_parallel/ u_perp$ defines the anisotropy exponent $theta$. Estimates of quantitative characteristics of the critical behaviour for such systems were only obtained up to now within the renormalization group approach. We report a study of the anisotropic scaling in this system via Monte Carlo simulation of the three-dimensional system with Ising spins and non-magnetic impurities arranged into randomly distributed parallel lines. Several independent estimates for the anisotropy exponent $theta$ of the system are obtained, as well as an estimate of the susceptibility exponent $gamma$. Our results corroborate the renormalization group predictions obtained earlier.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا