Do you want to publish a course? Click here

The sudden spin-down in the rotation of magnetar 1E 2259+586 observed by Archibald et al. (2013) was a rare event. However this particular event, referred to as an anti-glitch, was followed by another event which Archibald et al. (2013) suggested could either be a conventional glitch or another anti-glitch. Although there is no accompanied radiation activity or pulse profile change, there is decisive evidence for the existence of the second timing event, judging from the timing data. We apply Bayesian Model Selection to quantitatively determine which of these possibilities better explains the observed data. We show that the observed data strongly supports the presence of two successive anti-glitches with a Bayes Factor, often called the odds ratio, greater than 40. Furthermore, we show that the second anti-gtlich has an associated frequency change $Delta u$ of $-8.2 times 10^{-8}$ Hz. We discuss the implications of these results for possible physical mechanisms behind this anti-glitch.
We open the discussion into how the Laser Interferometer Space Antenna (LISA) observations of supermassive black-hole (SMBH) mergers (in the mass range ~10^6-10^8 Msun) may be complementary to pulsar timing-based gravitational wave searches. We consider the toy model of determining pulsar distances by exploiting the fact that LISA SMBH inspiral observations can place tight parameter constraints on the signal present in pulsar timing observations. We also suggest, as a future path of research, the use of LISA ring-down observations from the most massive (>~ a few 10^7 Msun) black-hole mergers, for which the inspiral stage will lie outside the LISA band, as both a trigger and constraint on searches within pulsar timing data for the inspiral stage of the merger.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا