Do you want to publish a course? Click here

We extend the circuit model of quantum comuptation so that the wiring between gates is soft-coded within registers inside the gates. The addresses in these registers can be manipulated and put into superpositions. This aims at capturing indefinite causal orders, as well as making their geometrical layout explicit. We show how to implement the quantum switch and the polarizing beam splitter within our model. One difficulty is that the names used as addresses should not matter beyond the wiring they describe, i.e. the evolution should commute with renamings. Yet, the evolution may act nontrivially on these names. Our main technical contribution is a full characterization of such nameblind matrices.
Gauge symmetries play a fundamental role in Physics, as they provide a mathematical justification for the fundamental forces. Usually, one starts from a non-interactive theory which governs `matter, and features a global symmetry. One then extends the theory so as make the global symmetry into a local one (a.k.a gauge-invariance). We formalise a discrete counterpart of this process, known as gauge extension, within the Computer Science framework of Cellular Automata (CA). We prove that the CA which admit a relative gauge extension are exactly the globally symmetric ones (a.k.a the colour-blind). We prove that any CA admits a non-relative gauge extension. Both constructions yield universal gauge-invariant CA, but the latter allows for a first example where the gauge extension mediates interactions within the initial CA.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا