Do you want to publish a course? Click here

In this paper, a random graph process ${G(t)}_{tgeq 1}$ is studied and its degree sequence is analyzed. Let $(W_t)_{tgeq 1}$ be an i.i.d. sequence. The graph process is defined so that, at each integer time $t$, a new vertex, with $W_t$ edges attached to it, is added to the graph. The new edges added at time t are then preferentially connected to older vertices, i.e., conditionally on $G(t-1)$, the probability that a given edge is connected to vertex i is proportional to $d_i(t-1)+delta$, where $d_i(t-1)$ is the degree of vertex $i$ at time $t-1$, independently of the other edges. The main result is that the asymptotical degree sequence for this process is a power law with exponent $tau=min{tau_{W}, tau_{P}}$, where $tau_{W}$ is the power-law exponent of the initial degrees $(W_t)_{tgeq 1}$ and $tau_{P}$ the exponent predicted by pure preferential attachment. This result extends previous work by Cooper and Frieze, which is surveyed.
The two-type Richardson model describes the growth of two competing infections on $mathbb{Z}^d$ and the main question is whether both infection types can simultaneously grow to occupy infinite parts of $mathbb{Z}^d$. For bounded initial configurations, this has been thoroughly studied. In this paper, an unbounded initial configuration consisting of points $x=(x_1,...,x_d)$ in the hyperplane $mathcal{H}={xinmathbb{Z}^d:x_1=0}$ is considered. It is shown that, starting from a configuration where all points in $mathcal{H} {mathbf{0}}$ are type 1 infected and the origin $mathbf{0}$ is type 2 infected, there is a positive probability for the type 2 infection to grow unboundedly if and only if it has a strictly larger intensity than the type 1 infection. If, instead, the initial type 1 infection is restricted to the negative $x_1$-axis, it is shown that the type 2 infection at the origin can also grow unboundedly when the infection types have the same intensity.
In this paper, a branching process approximation for the spread of a Reed-Frost epidemic on a network with tunable clustering is derived. The approximation gives rise to expressions for the epidemic threshold and the probability of a large outbreak in the epidemic. It is investigated how these quantities varies with the clustering in the graph and it turns out for instance that, as the clustering increases, the epidemic threshold decreases. The network is modelled by a random intersection graph, in which individuals are independently members of a number of groups and two individuals are linked to each other if and only if they share at least one group.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا