Do you want to publish a course? Click here

For the last 30 years many observational and theoretical evidences have shown that galaxy clusters are not spherical objects, and that their shape is much better described by a triaxial geometry. With the advent of multi-wavelength data of increasing quality, triaxial investigations of galaxy clusters is gathering a growing interest from the community, especially in the time of precision cosmology. In this work, we aim to provide the first statistically significant predictions in the unexplored mass range above 3x10^14 Mo/h, using haloes from two redshifts (z=0 and z=1) of the Millennium XXL simulation. The size of this cosmological dark matter only simulation (4.1 Gpc) allows the formation of a statistically significant number of massive cluster scale haloes (about 500 with M>2x10^15 Mo/h and 780000 with M>10^14 Mo/h). Besides, we aim to extend this investigation to lower masses in order to look for universal predictions across nearly six orders of magnitude in mass, from 10^10 to almost 10^16 Mo/h. For this purpose we use the SBARBINE simulations, allowing to model haloes of masses starting from 10^10 Mo/h. We use an elliptical overdensity method to select haloes and compute the shapes of the unimodal ones (approximately 50%), while we discard the unrelaxed. The minor to major and intermediate to major axis ratio are found to be well described by simple functional forms. For a given mass we can fully characterize the shape of a halo and give predictions about the distribution of axis ratios for a given cosmology and redshift. Moreover, these results are in some disagreement with the findings of Jing & Suto (2002) which are widely used in the community even though they have to be extrapolated far beyond their original mass range. This recipe is made available to the community in this paper and in a dedicated web page.
Measuring the intrinsic shape and orientation of dark matter (DM) and intracluster (IC) gas in galaxy clusters is crucial to constraining their formation and evolution, and for enhancing the use of clusters as more precise cosmological probes. Extending our previous works, we present for the first time results from a triaxial joint analysis of the galaxy cluster Abell 1835, by means of X-ray, strong lensing (SL) and Sunyaev Zeldovich (SZ) data. We parametrically reconstruct the full three-dimensional structure (triaxial shape and principal axis orientation) of both the DM and the IC gas, and the level of non-thermal pressure of the IC gas. We find that the intermediate-major and minor-major axis ratios of the DM are 0.71+/-0.08 and 0.59+/-0.05, respectively, and the major axis of the DM halo is inclined with respect to the line of sight at 18.3+/-5.2 deg. We present the first observational measurement of the non-thermal pressure out to R_{200}, which has been evaluated to be a few percent of the total energy budget in the internal regions, while reaching approximately 20% in the outer volumes. We discuss the implications of our method for the viability of the CDM scenario, focusing on the concentration parameter C and the inner slope of the DM gamma in order to test the cold dark matter (CDM) paradigm for structure formation: we measure gamma=1.01+/-0.06 and C=4.32+/-0.44, values which are close to the predictions of the CDM model. The combination of X-ray/SL data at high spatial resolution, capable of resolving the cluster core, with the SZ data, which are more sensitive to the cluster outer volume, allows us to characterize the level and the gradient of the gas entropy distribution and non-thermal pressure out to R_{200}, breaking the degeneracy among the physical models describing the thermal history of the ICM.
We present Advanced Camera for Surveys observations of MACSJ1149.5+2223, an X-ray luminous galaxy cluster at z=0.544 discovered by the Massive Cluster Survey. The data reveal at least seven multiply-imaged galaxies, three of which we have confirmed spectroscopically. One of these is a spectacular face-on spiral galaxy at z=1.491, the four images of which are gravitationally magnified by ~8<mu<~23. We identify this as an L* (M_B=-20.7), disk-dominated (B/T<~0.5) galaxy, forming stars at ~6Msol/yr. We use a robust sample of multiply-imaged galaxies to constrain a parameterized model of the cluster mass distribution. In addition to the main cluster dark matter halo and the bright cluster galaxies, our best model includes three galaxy-group-sized halos. The relative probability of this model is P(N_halo=4)/P(N_halo<4)>=10^12 where N_halo is the number of cluster/group-scale halos. In terms of sheer number of merging cluster/group-scale components, this is the most complex strong-lensing cluster core studied to date. The total cluster mass and fraction of that mass associated with substructures within R<=500kpc, are measured to be M_tot=(6.7+/-0.4)x10^14Msol and f_sub=0.25+/-0.12 respectively. Our model also rules out recent claims of a flat density profile at >~7sigma confidence, thus highlighting the critical importance of spectroscopic redshifts of multiply-imaged galaxies when modeling strong lensing clusters. Overall our results attest to the efficiency of X-ray selection in finding the most powerful cluster lenses, including complicated merging systems.
To assess the effect of baryonic ``pinching of galaxy cluster dark matter (DM) haloes, cosmological (LCDM) TreeSPH simulations of the formation and evolution of two galaxy clusters have been performed, with and without baryons included. The simulations with baryons invoke star formation, chemical evolution with non-instantaneous recycling, metallicity dependent radiative cooling, strong star-burst, driven galactic super-winds and the effects of a meta-galactic UV field, including simplified radiative transfer. The two clusters have T_X~3 and 6 keV, respectively, and, at z~0, both host a prominent, central cD galaxy. Comparing the simulations without and with baryons, it is found for the latter that the inner DM density profiles, r<50-100 kpc, steepen considerably: Delta(alpha)~0.5-0.6, where -alpha is the logarithmic DM density gradient. This is mainly due to the central stellar cDs becoming very massive, as a consequence of the onset of late time cooling flows and related star formation. Once these spurious cooling flows have been corrected for, and the cluster gravitational potentials dynamically adjusted, much smaller pinching effects are found: Delta(alpha)~0.1. Including the effects of baryonic pinching, central slopes of alpha~1.0 and 1.2 are found for the DM in the two clusters, interestingly close to recent observational findings. For the simulations with baryons, the inner density profile of DM+ICM gas combined is found to be only very marginally steeper than that of the DM, Delta(alpha)<0.05. However, the total matter inner density profiles are found to be Delta(alpha)~0.5 steeper than the inner profiles in the dark matter only simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا