Do you want to publish a course? Click here

We propose a simple scheme for tomography of band-insulating states in one- and two-dimensional optical lattices with two sublattice states. In particular, the scheme maps out the Berry curvature in the entire Brillouin zone and extracts topological invariants such as the Chern number. The measurement relies on observing---via time-of-flight imaging---the time evolution of the momentum distribution following a sudden quench in the band structure. We consider two examples of experimental relevance: the Harper model with $pi$-flux and the Haldane model on a honeycomb lattice. Moreover, we illustrate the performance of the scheme in the presence of a parabolic trap, noise, and finite measurement resolution.
We investigate theoretically the time evolution of a one-dimensional system of spin-1/2 fermions in a harmonic trap after, initially, a spiral spin configuration far-from equilibrium is created. We predict a spin segregation building up in time already for weak interaction under realistic experimental conditions. The effect relies on the interplay between exchange interaction and the harmonic trap, and it is found for a wide range of parameters. It can be understood as a consequence of an effective, dynamically induced long-range interaction that is derived by integrating out the rapid oscillatory dynamics in the trap.
Considering a system of ultracold atoms in an optical lattice, we propose a simple and robust implementation of a quantum simulator for the homogeneous t-J model with a well-controlled fraction of holes x. The proposed experiment can provide valuable insight into the physics of cuprate superconductors. A similar scheme applied to bosons, moreover, allows one to investigate experimentally the subtle role of inhomogeneity when a system passes from one quantum phase to another.
We study strategies for establishing long-distance entanglement in quantum networks. Specifically, we consider networks consisting of regular lattices of nodes, in which the nearest neighbors share a pure, but non-maximally entangled pair of qubits. We look for strategies that use local operations and classical communication. We compare the classical entanglement percolation protocol, in which every network connection is converted with a certain probability to a singlet, with protocols in which classical entanglement percolation is preceded by measurements designed to transform the lattice structure in a way that enhances entanglement percolation. We analyze five examples of such comparisons between protocols and point out certain rules and regularities in their performance as a function of degree of entanglement and choice of operations.
We study systems of fully polarized ultracold atomic gases obeying Fermi statistics. The atomic transition interacts dispersively with a mode of a standing-wave cavity, which is coherently pumped by a laser. In this setup, the intensity of the intracavity field is determined by the refractive index of the atomic medium, and thus by the atomic density distribution. Vice versa, the density distribution of the atom is determined by the cavity field potential, whose depth is proportional to the intracavity field amplitude. In this work we show that this nonlinearity leads to an instability in the intracavity intensity that differs substantially from dispersive optical bistability, as this effect is already present in the regime, where the atomic dipole is proportional to the cavity field. Such instability is driven by the matter waves fluctuations and exhibits a peculiar dependence on the fluctuations in the atomic density distribution.
We consider a mixture of a superfluid Fermi gas of ultracold atoms and a Bose-Einstein condensate of molecules possessing a continuous U(1) (relative phase) symmetry. We study the effects that a spatially random photo-associative-dissociative symmetry breaking coupling of the systems. Such coupling allows to control the relative phase between a superfluid order parameter of the Fermi system and the condensate wavefunction of molecules for temperatures below the BCS critical temperature. The presented mechanism of phase control belongs to the general class of disorder-induced order phenomena that rely on breaking of continuous symmetry.
We present a concise review of the physics of ultra-cold dipolar gases, based mainly on the theoretical developments in our own group. First, we discuss shortly weakly interacting ultra-cold trapped dipolar gases. Dipolar Bose-Einstein condensates exhibit non-standard instabilities and the physics of both Bose and Fermi dipolar gases depends on the trap geometry. We focus then the second part of the paper on strongly correlated dipolar gases and discuss ultra-cold dipolar gases in optical lattices. Such gases exhibit a spectacular richness of quantum phases and metastable states, which may perhaps be used as quantum memories. We comment shortly on the possibility of superchemistry aiming at the creation of dipolar heteronuclear molecules in lattices. Finally, we turn to ultra-cold dipolar gases in artificial magnetic fields, and consider rotating dipolar gases, that provide in our opinion the best option towards the realization of the fractional quantum Hall effect and quantum Wigner crystals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا