Do you want to publish a course? Click here

It is shown that the Confluent Heun Equation (CHEq) reduces for certain conditions of the parameters to a particular class of Quasi-Exactly Solvable models, associated with the Lie algebra $sl (2,{mathbb R})$. As a consequence it is possible to find a set of polynomial solutions of this quasi-exactly solvable version of the CHEq. These finite solutions encompass previously known polynomial solutions of the Generalized Spheroidal Equation, Razavy Eq., Whittaker-Hill Eq., etc. The analysis is applied to obtain and describe special eigen-functions of the quantum Hamiltonian of two fixed Coulombian centers in two and three dimensions.
This work deals with the construction of networks of topological defects in models described by a single complex scalar field. We take advantage of the deformation procedure recently used to describe kinklike defects in order to build networks of topological defects, which appear from complex field models with potentials that engender a finite number of isolated minima, both in the case where the minima present discrete symmetry, and in the non symmetric case. We show that the presence of symmetry guide us to the construction of regular networks, while the non symmetric case gives rise to irregular networks which spread throughout the complex field space. We also discuss bifurcation, a phenomenon that appear in the non symmetric case, but is washed out by the deformation procedure used in the present work.
We propose a new way to build networks of defects. The idea takes advantage of the deformation procedure recently employed to describe defect structures, which we use to construct networks, spread from small rudimentary networks that appear in simple models of scalar fields.
The problem of building supersymmetry in the quantum mechanics of two Coulombian centers of force is analyzed. It is shown that there are essentially two ways of proceeding. The spectral problems of the SUSY (scalar) Hamiltonians are quite similar and become tantamount to solving entangled families of Razavy and Whittaker-Hill equations in the first approach. When the two centers have the same strength, the Whittaker-Hill equations reduce to Mathieu equations. In the second approach, the spectral problems are much more difficult to solve but one can still find the zero-energy ground states.
We present a method for generating new deformed solutions starting from systems of two real scalar fields for which defect solutions and orbits are known. The procedure generalizes the approach introduced in a previous work [Phys. Rev. D 66, 101701(R) (2002)], in which it is shown how to construct new models altogether with its defect solutions, in terms of the original model and solutions. As an illustration, we work out an explicit example in detail.
We investigate the exact relation existing between the stability equation for the solutions of a mechanical system and the geodesic deviation equation of the associated geodesic problem in the Jacobi metric constructed via the Maupertuis-Jacobi Principle. We conclude that the dynamical and geometrical approaches to the stability/instability problem are not equivalent.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا