Do you want to publish a course? Click here

73 - M. Y. Li , Z. T. Liu , H. F. Yang 2015
By means of oxide molecular beam epitaxy with shutter-growth mode, we have fabricated a series of electron-doped (Sr1-xLax)2IrO4(001)(x = 0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigated the doping dependence of electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. We find that with increasing doping proportion, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point has been evidently observed in 15 % nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2IrO4.
233 - M. Y. Li , J. Yuan , N. Kinev 2012
We report on measurements of the linewidth {Delta}f of THz radiation emitted from intrinsic Josephson junction stacks, using a Nb/AlN/NbN integrated receiver for detection. Previous resolution limited measurements indicated that {Delta}f may be below 1 GHz - much smaller than expected from a purely cavity-induced synchronization. While at low bias we found {Delta}f to be not smaller than ? 500 MHz, at high bias, where a hotspot coexists with regions which are still superconducting, {Delta}f turned out to be as narrow as 23 MHz. We attribute this to the hotspot acting as a synchronizing element. {Delta}f decreases with increasing bath temperature, a behavior reminiscent of motional narrowing in NMR or ESR, but hard to explain in standard electrodynamic models of Josephson junctions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا