Do you want to publish a course? Click here

126 - C. Y. Guo , Y. Chen , M. Smidman 2015
We present a pressure study of the electrical resistivity, AC magnetic susceptibility and powder x-ray diffraction (XRD) of the newly discovered BiS$_2$-based superconductor EuBiS$_2$F. At ambient pressure, EuBiS$_2$F shows an anomaly in the resistivity at around $T_0approx 280$ K and a superconducting transition at $T_capprox 0.3$ K. Upon applying hydrostatic pressure, there is little change in $T_0$ but the amplitude of the resistive anomaly is suppressed, whereas there is a dramatic enhancement of $T_c$ from 0.3 K to about 8.6 K at a critical pressure of $p_c$ $approx{1.4}$ GPa. XRD measurements confirm that this enhancement of $T_c$ coincides with a structural phase transition from a tetragonal phase ($P4/nmm$) to a monoclinic phase ($P2_1$/m), which is similar to that observed in isostructural LaO$_{0.5}$F$_{0.5}$BiS$_2$. Our results suggest the presence of two different superconducting phases with distinct crystal structures in EuBiS$_2$F, which may be a general property of this family of BiS$_2$-based superconductors.
The recent discovery of superconductivity in the quasi-one-dimensional compound K$_2$Cr$_3$As$_3$, which consists of double-walled tubes of [(Cr$_3$As$_3$)$^{2-}]^infty$ that run along the c axis, has attracted immediate attention as a potential system for studying superconductors with reduced dimensionality. Here we report clear experimental evidence for the unconventional nature of the superconducting order parameter in K$_2$Cr$_3$As$_3$, by precisely measuring the temperature dependence of the change in the penetration depth $Deltalambda(T)$ using a tunnel diode oscillator. Linear behavior of $Deltalambda(T)$ is observed for $Tll T_c$, instead of the exponential behavior of conventional superconductors, indicating that there are line nodes in the superconducting gap. This is strong evidence for unconventional behavior and may provide key information for identifying the pairing state of this novel superconductor.
The magnetic states of the non-centrosymmetric, pressure induced superconductor CeCoGe3 have been studied with magnetic susceptibility, muon spin relaxation(muSR), single crystal neutron diffraction and inelastic neutron scattering (INS). CeCoGe3 exhibits three magnetic phase transitions at T_N1 = 21 K, T_N2 = 12 K and T_N3 = 8 K. The presence of long range magnetic order below T_N1 is revealed by the observation of oscillations of the asymmetry in the muSR spectra between 13 K and 20 K and a sharp increase in the muon depolarization rate. Single crystal neutron diffraction measurements reveal magnetic Bragg peaks consistent with propagation vectors of k = 2/3 between T_N1 and T_N2, k = 5/8between T_N2 and T_N3 and k = 1/2 below T_N3. An increase in intensity of the (1 1 0) reflection between T_N1 and T_N3 also indicates a ferromagnetic component in these phases. These measurements are consistent with an equal moment, two-up, two-down magnetic structure below T_N3, with a magnetic moment of 0.405(5) mu_B/Ce. Above T_N2, the results are consistent with an equal moment, two-up, one-down structure with a moment of 0.360(6) mu_B/Ce. INS studies reveal two crystal-field (CEF) excitations at 19 and 27 meV. From an analysis with a CEF model, the wave-functions of the J = 5/2 multiplet are evaluated along with a prediction for the magnitude and direction of the ground state magnetic moment. Our model correctly predicts that the moments order along the c axis but the observed magnetic moment of 0.405(5) mu_B is reduced compared to the predicted moment of 1.01 mu_B. This is ascribed to hybridization between the localized Ce^3+ f-electrons and the conduction band. This suggests that CeCoGe3 has a degree of hybridization between that of CeRhGe3 and the non-centrosymmetric superconductor CeRhSi3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا