Do you want to publish a course? Click here

Electric control of multiferroic domains is demonstrated through polarized magnetic neutron diffraction. Cooling to the cycloidal multiferroic phase of Ni3V2O8 in an electric field (E) causes the incommensurate Bragg reflections to become neutron spin polarizing, the sense of neutron polarization reversing with E. Quantitative analysis indicates the E-treated sample has handedness that can be reversed by E. We further show close association between cycloidal and ferroelectric domains through E-driven spin and electric polarization hysteresis. We suggest that definite cycloidal handedness is achieved through magneto-elastically induced Dzyaloshinskii-Moriya interactions.
Detailed spin-wave spectra of magneto-electric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase with ordering temperature 20.8 K. An anomalous low-energy mode is observed at the modulation vector of the incommensurate (IC) AF phase appearing above the 20.8 K. A linear spin-wave model based on Heisenberg exchange couplings and single ion anisotropies accounts for all the observed spin-wave dispersions and intensities. Along the b axis an unusually strong next-nearest-neighbor AF coupling competes with the dominant nearest-neighbor AF exchange interaction and causes the IC structure.
Neutron diffraction is used to probe the (H,T) phase diagram of magneto-electric (ME) LiNiPO4 for magnetic fields along the c-axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors (0,0,0), the other one is incommensurate (IC) with ordering vector (0,q,0). At low temperatures the C order collapses above 12 Tesla and adopts an IC structure with modulation vector parallel to (0,q,0). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction of the total magneto-elastic energy.
There has been tremendous research activity in the field of magneto-electric (ME) multiferroics after Kimura et al. [1] showed that antiferromagnetic and ferroelectric order coexist in orthorhom- bically distorted perovskite TbMnO3 and are strongly coupled. It is now generally accepted that ferroelectricity in TbMnO3 is induced by magnetic long range order that breaks the symmetry of the crystal and creates a polar axis [2]. One remaining key question is whether magnetic order can induce ferroelectric polarization that is as large as that of technologically useful materials. We show that ferroelectricity in orthorhombic (o) TmMnO3 is induced by collinear magnetic order, and that the lower limit for its electric polarization is larger than in previously investigated orthorhombic heavy rare-earth manganites. The temperature dependence of the lattice constants provides fur- ther evidence of large spin-lattice coupling effects. Our experiments suggest that the ferroelectric polarization in the orthorhombic perovskites with commensurate magnetic ground states could pass the 1 microC/cm2 threshold, as suggested by theory [3, 4].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا