Do you want to publish a course? Click here

We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m$^2$ Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.
We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.
This document contains a summary of the workshop which took place on 22 - 24 February 2012 at the Kavli Institute of Cosmological Physics in the University of Chicago. The goal of the workshop was to discuss the physics reach of the JEM-EUSO mission and how best to implement a global ground based calibration system for the instrument to realize the physics goal of unveiling the origin of the highest energy cosmic rays.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا