Do you want to publish a course? Click here

We introduce a contrarian opinion (CO) model in which a fraction p of contrarians within a group holds a strong opinion opposite to the opinion held by the rest of the group. At the initial stage, stable clusters of two opinions, A and B exist. Then we introduce contrarians which hold a strong B opinion into the opinion A group. Through their interactions, the contrarians are able to decrease the size of the largest A opinion cluster, and even destroy it. We see this kind of method in operation, e.g when companies send free new products to potential customers in order to convince them to adopt the product and influence others. We study the CO model, using two different strategies, on both ER and scale-free networks. In strategy I, the contrarians are positioned at random. In strategy II, the contrarians are chosen to be the highest degrees nodes. We find that for both strategies the size of the largest A cluster decreases to zero as p increases as in a phase transition. At a critical threshold value p_c the system undergoes a second-order phase transition that belongs to the same universality class of mean field percolation. We find that even for an ER type model, where the degrees of the nodes are not so distinct, strategy II is significantly more effctive in reducing the size of the largest A opinion cluster and, at very small values of p, the largest A opinion cluster is destroyed.
In a network, we define shell $ell$ as the set of nodes at distance $ell$ with respect to a given node and define $r_ell$ as the fraction of nodes outside shell $ell$. In a transport process, information or disease usually diffuses from a random node and reach nodes shell after shell. Thus, understanding the shell structure is crucial for the study of the transport property of networks. For a randomly connected network with given degree distribution, we derive analytically the degree distribution and average degree of the nodes residing outside shell $ell$ as a function of $r_ell$. Further, we find that $r_ell$ follows an iterative functional form $r_ell=phi(r_{ell-1})$, where $phi$ is expressed in terms of the generating function of the original degree distribution of the network. Our results can explain the power-law distribution of the number of nodes $B_ell$ found in shells with $ell$ larger than the network diameter $d$, which is the average distance between all pairs of nodes. For real world networks the theoretical prediction of $r_ell$ deviates from the empirical $r_ell$. We introduce a network correlation function $c(r_ell)equiv r_{ell+1}/phi(r_ell)$ to characterize the correlations in the network, where $r_{ell+1}$ is the empirical value and $phi(r_ell)$ is the theoretical prediction. $c(r_ell)=1$ indicates perfect agreement between empirical results and theory. We apply $c(r_ell)$ to several model and real world networks. We find that the networks fall into two distinct classes: (i) a class of {it poorly-connected} networks with $c(r_ell)>1$, which have larger average distances compared with randomly connected networks with the same degree distributions; and (ii) a class of {it well-connected} networks with $c(r_ell)<1$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا