Do you want to publish a course? Click here

We present the results of our ALMA Cycle 0 observations, using HCN/HCO+/HNC J=4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO+ J=4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J=1-0 transition, while there is no clear difference in the HCN-to-HNC J=4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO+ J=4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J=4-3 emission relative to HCO+ J=4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array (VLA) at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz (a spectral index of ~0.3) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds (bulk Lorentz factors of >~ 3) of jet and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum emission at the galactic center. Quasi-simultaneous multi-frequency observations using the Very Large Array (VLA) from 5 GHz (6 cm) to 22 GHz (1.3 cm) showed inverted spectra in all epochs, which were intra-month variable, as well as complicated spectral features that cannot be represented by a simple power law, indicating multiple blobs in nuclear jets. Using the Nobeyama Millimeter Array (NMA), we discovered a large amplitude variable emission at 100 GHz (3 mm), which had higher flux densities at most epochs than those of the VLA observations. A James Clerk Maxwell Telescope (JCMT) observation at 347 GHz (850 micron) served an upper limit of dust contamination. The inverted radio spectrum of the nucleus NGC 4258 is suggestive of an analogy to our Galactic center Sgr A*, but with three orders of magnitude higher radio luminosity. In addition to the LLAGN M 81, we discuss the nucleus of NGC 4258 as another up-scaled version of Sgr A*.
Cyg X-3 is a well-known microquasar with a bipolar relativistic jet. Its famous giant radio outbursts have been repeated once every several years. However, the behavior of the millimeter wave emission has remained unclear because of limitations of time resolution in previous observations. We report here millimeter wave observations of Cyg X-3 experiencing giant outbursts with one of the finest time resolutions. We find a series of short-lived flares with amplitude of 1-2 Jy in the millimeter light curve of the 2008 April-May outburst. They have flat spectra around 100 GHz. We also find abrupt and large amplitude flux density changes with e-folding time of 3.6 minutes or less. The source size of Cyg X-3 is constrained within 0.4 AU and the brightness temperature is estimated to be $T_B gtrsim 1times10^{11}$ K.
We report the results of HCN(J=4-3) and HCO+(J=4-3) observations of two luminous infrared galaxies (LIRGs), NGC 4418 and Arp 220, made using the Atacama Submillimeter Telescope Experiment (ASTE). The ASTE wide-band correlator provided simultaneous observations of HCN(4-3) and HCO+(4-3) lines, and a precise determination of their flux ratios. Both galaxies showed high HCN(4-3) to HCO+(4-3) flux ratios of >2, possibly due to AGN-related phenomena. The J = 4-3 to J = 1-0 transition flux ratios for HCN (HCO+) are similar to those expected for fully thermalized (sub-thermally excited) gas in both sources, in spite of HCNs higher critical density. If we assume collisional excitation and neglect an infrared radiative pumping process, our non-LTE analysis suggests that HCN traces gas with significantly higher density than HCO+. In Arp 220, we separated the double-peaked HCN(4-3) emission into the eastern and western nuclei, based on velocity information. We confirmed that the eastern nucleus showed a higher HCN(4-3) to HCN(1-0) flux ratio, and thus contained a larger amount of highly excited molecular gas than the western nucleus.
We present results from a deep (1 sigma = 5.7 mJy beam^{-1} per 20.8 km s^{-1} velocity channel) ^{12}CO(1-0) interferometric observation of the central 60 region of the nearby edge-on starburst galaxy NGC 2146 observed with the Nobeyama Millimeter Array (NMA). Two diffuse expanding molecular superbubbles and one molecular outflow are successfully detected. One molecular superbubble, with a size of ~1 kpc and an expansion velocity of ~50 km s^{-1}, is located below the galactic disk; a second molecular superbubble, this time with a size of ~700 pc and an expansion velocity of ~35 km s^{-1}, is also seen in the position-velocity diagram; the molecular outflow is located above the galactic disk with an extent ~2 kpc, expanding with a velocity of up to ~200 km s^{-1}. The molecular outflow has an arc-like structure, and is located at the front edge of the soft X-ray outflow. In addition, the kinetic energy (~3E55 erg) and the pressure (~1 E-12 pm 1 dyne cm ^{-2}) of the molecular outflow is comparable to or smaller than that of the hot thermal plasma, suggesting that the hot plasma pushes the molecular gas out from the galactic disk. Inside the ~1 kpc size molecular superbubble, diffuse soft X-ray emission seems to exist. But since the superbubble lies behind the inclined galactic disk, it is largely absorbed by the molecular gas.
We report the results of interferometric HCN(1-0) and HCO+(1-0) observations of four luminous infrared galaxies (LIRGs), NGC 2623, Mrk 266, Arp 193, and NGC 1377, as a final sample of our systematic survey using the Nobeyama Millimeter Array. Our survey contains the most systematic interferometric, spatially-resolved, simultaneous HCN(1-0) and HCO+(1-0) observations of LIRGs. Ground-based infrared spectra of these LIRGs are also presented to elucidate the nature of the energy sources at the nuclei. We derive the HCN(1-0)/HCO+(1-0) brightness-temperature ratios of these LIRGs and confirm the previously discovered trend that LIRG nuclei with luminous buried AGN signatures in infrared spectra tend to show high HCN(1-0)/HCO+(1-0) brightness-temperature ratios, as seen in AGNs, while starburst-classified LIRG nuclei in infrared spectra display small ratios, as observed in starburst-dominated galaxies. Our new results further support the argument that the HCN(1-0)/HCO+(1-0) brightness-temperature ratio can be used to observationally separate AGN-important and starburst-dominant galaxy nuclei.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا