Do you want to publish a course? Click here

We provide a formula to reconstruct bulk spacetime metrics inside black holes by the time dependence of complexity in the dual quantum field theory, based on the complexity=volume (CV) conjecture in the holographic duality.
We provide a detailed examination of a thermal out-of-time-order correlator (OTOC) growing exponentially in time in systems without chaos. The system is a one-dimensional quantum mechanics with a potential whose part is an inverted harmonic oscillator. We numerically observe the exponential growth of the OTOC when the temperature is higher than a certain threshold. The Lyapunov exponent is found to be of the order of the classical Lyapunov exponent generated at the hilltop, and it remains non-vanishing even at high temperature. We adopt various shape of the potential and find these features universal. The study confirms that the exponential growth of the thermal OTOC does not necessarily mean chaos when the potential includes a local maximum. We also provide a bound for the Lyapunov exponent of the thermal OTOC in generic quantum mechanics in one dimension, which is of the same form as the chaos bound obtained by Maldacena, Shenker and Stanford.
We propose a deep learning method to build an AdS/QCD model from the data of hadron spectra. A major problem of generic AdS/QCD models is that a large ambiguity is allowed for the bulk gravity metric with which QCD observables are holographically calculated. We adopt the experimentally measured spectra of $rho$ and $a_2$ mesons as training data, and perform a supervised machine learning which determines concretely a bulk metric and a dilaton profile of an AdS/QCD model. Our deep learning (DL) architecture is based on the AdS/DL correspondence (arXiv:1802.08313) where the deep neural network is identified with the emergent bulk spacetime.
Exponential growth of thermal out-of-time-order correlator (OTOC) is an indicator of a possible gravity dual, and a simple toy quantum model showing the growth is being looked for. We consider a system of two harmonic oscillators coupled nonlinearly with each other, and numerically observe that the thermal OTOC grows exponentially in time. The system is well-known to be classically chaotic, and is a reduction of Yang-Mills-Higgs theory. The exponential growth is certified because the growth exponent (quantum Lyapunov exponent) of the thermal OTOC is well matched with the classical Lyapunov exponent, including their energy/temperature dependence. Even in the presence of the exponential growth in the OTOC, the energy level spacings are not sufficient to judge a Wigner distribution, hence the OTOC is a better indicator of quantum chaos.
Clarifying conditions for the existence of a gravitational picture for a given quantum field theory (QFT) is one of the fundamental problems in the AdS/CFT correspondence. We propose a direct way to demonstrate the existence of the dual black holes: imaging an Einstein ring. We consider a response function of the thermal QFT on a two-dimensional sphere under a time-periodic localized source. The dual gravity picture, if it exists, is a black hole in an asymptotic global AdS$_4$ and a bulk probe field with a localized source on the AdS boundary. The response function corresponds to the asymptotic data of the bulk field propagating in the black hole spacetime. We find a formula that converts the response function to the image of the dual black hole: The view of the sky of the AdS bulk from a point on the boundary. Using the formula, we demonstrate that, for a thermal state dual to the Schwarzschild-AdS$_4$ spacetime, the Einstein ring is constructed from the response function. The evaluated Einstein radius is found to be determined by the total energy of the dual QFT. Our theoretical proposal opens a door to gravitational phenomena on strongly correlated materials.
It is challenging to quantify chaos of QCD, because non-perturbative QCD accompanies non-local observables. By using holography, we find that QCD strings at large $N_c$ and strong coupling limit exhibit chaos, and measure their Lyapunov exponent at zero temperature. A pair of a quark and an antiquark separated by $L_q$ in the large $N_c$ QCD is dual to a Nambu-Goto string hanging from the spatial boundary of the D4-soliton geometry. We numerically solve the motion of the string after putting a pulse force on its boundaries. The chaos is observed for the amplitude of the force larger than a certain lower bound. The bound increases as $L_q$ grows, and its dependence is well approximated by a hypothesis that the chaos originates in the endpoints of the QCD string.
A new method to study nuclear physics via holographic QCD is proposed. Multiple baryons in the Sakai-Sugimoto background are described by a matrix model which is a low energy effective theory of D-branes of the baryon vertices. We study the quantum mechanics of the matrix model and calculate the eigenstates of the Hamiltonian. The obtained states are found to coincide with known nuclear and baryonic states, and have appropriate statistics and charges. Calculated spectra of the baryon/nucleus for small baryon numbers show good agreement with experimental data. For hyperons, the Gell-Mann--Okubo formula is approximately derived. Baryon resonances up to spin $5/2$ and isospin $5/2$ and dibaryon spectra are obtained and compared with experimental data. The model partially explains even the magic numbers of light nuclei, $N=2,8$ and $20$.
Thermal states in some quantum field theories (QFTs) correspond to black holes in asymptotically AdS spacetime in the AdS/CFT correspondence. We propose a direct procedure to construct holographic images of the black hole in the bulk from a given response function of the QFT on the boundary. The response function with respect to an external source corresponds to the asymptotic data of the bulk field generated by the source on the AdS boundary. According to the wave optics, we can obtain the images from the bulk field propagating in the bulk spacetime. For a thermal state on two-dimensional sphere dual to Schwarzschild-AdS$_4$ black hole, we demonstrate that the holographic images gravitationally lensed by the black hole can be constructed from the response function. In particular, the Einstein rings on the image can be clearly observed and their radius depends on the total energy of the QFT thermal state. These results are consistent with the size of the photon sphere of the black hole calculated in geometrical optics. This implies that, if there exists a dual gravitational picture for a given quantum system, we would be able to probe existence of the dual black hole by the Einstein rings constructed from observables of the quantum system.
We apply the relation between deep learning (DL) and the AdS/CFT correspondence to a holographic model of QCD. Using a lattice QCD data of the chiral condensate at a finite temperature as our training data, the deep learning procedure holographically determines an emergent bulk metric as neural network weights. The emergent bulk metric is found to have both a black hole horizon and a finite-height IR wall, so shares both the confining and deconfining phases, signaling the cross-over thermal phase transition of QCD. In fact, a quark antiquark potential holographically calculated by the emergent bulk metric turns out to possess both the linear confining part and the Debye screening part, as is often observed in lattice QCD. From this we argue the discrepancy between the chiral symmetry breaking and the quark confinement in the holographic QCD. The DL method is shown to provide a novel data-driven holographic modeling of QCD, and sheds light on the mechanism of emergence of the bulk geometries in the AdS/CFT correspondence.
Measuring chaos of QCD-like theories is a challenge for formulating a novel characterization of quantum gauge theories. We define a chaos phase diagram of QCD allowing us to locate chaos in the parameter space of energy of homogeneous meson condensates and the QCD parameters such as pion/quark mass. We draw the chaos phase diagrams obtained in two ways: first, by using a linear sigma model, varying parameters of the potential, and second, by using the D4/D6 holographic QCD, varying the number of colors $N_c$ and the t Hooft coupling constant $lambda$. A scaling law drastically simplifies our analyses, and we discovered that the chaos originates in the maximum of the potential, and larger $N_c$ or larger $lambda$ diminishes the chaos.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا