Do you want to publish a course? Click here

The evolution of magnetism and superconductivity in Ce$_2$Rh$_{1-x}$Pd$_x$In$_8$ solid solutions has been studied within the entire concentration range by means of thermodynamic and magnetic measurements at ambient pressure and at temperatures between 0.35 K and room temperature. For this purpose, single crystals with Pd concentrations x = 0, 0.10, 0.15, 0.30, 0.45, 0.55, 0.85 and 1 have been grown from In self-flux and characterized by x-ray diffraction and microprobe analysis. Starting from the antiferromagnet Ce$_2$RhIn$_8$, the Neel temperature gradually decreases with increasing Pd concentration and the antiferromagnetism has disappeared for $x ge 0.45$. Superconductivity has been observed only for Ce$_2$PdIn$_8$.
The effect of substituting Rh in CeRh1-xPdxIn5 with Pd up to x = 0.25 has been studied on single crystals. The crystals have been grown by means of the In self-flux method and characterized by x-ray diffraction and microprobe. The tetragonal HoCoGa5-type of structure and the c/a ratio of the parent compound remains intact by the Pd substitution; the unit cell volume increases by 0.6 % with x = 0.25 of Pd. The low-temperature behavior of resistivity was studied also under hydrostatic pressure up to 2.25 GPa. The Pd substitution for Rh affects the magnetic behavior and the maximum value of the superconducting transition temperature measured at pressures above 2 GPa only negligibly. On the other hand, the results provide evidence that superconductivity in CeRh0.75Pd0.25In5 is induced at significantly lower pressures, i.e. the Pd substitution for Rh shifts the CeRh1-xPdxIn5 system closer to coexistence of magnetism and superconductivity at ambient pressure.
We report on single crystal growth and crystallographic parameters results of Ce$_2$PdIn$_8$, Ce$_3$PdIn$_{11}$, Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$. The Pt-systems Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$ are synthesized for the first time. All these compounds are member of the Ce$_n$T$_m$In$_{3n+2m}$ (n = 1, 2,..; m = 1, 2,.. and T = transition metal) to which the extensively studied heavy fermion superconductor CeCoIn$_5$ belongs. Single crystals have been grown by In self-flux method. Differential scanning calorimetry studies were used to derive optimal growth conditions. Evidently, the maximum growth conditions for these materials should not exceed 750 $^{circ}$C. Single crystal x-ray data show that Ce$_2$TIn$_8$ compounds crystallize in the tetragonal Ho$_2$CoGa$_8$ phase (space group P4/mmm) with lattice parameters a =4.6898(3) $AA$ and c =12.1490(8) $AA$ for the Pt-based one (Pd: a = 4.6881(4) $AA$ and c = 12.2031(8) AA). The Ce$_3$TIn$_{11}$ compounds adopt the Ce$_3$PdIn$_{11}$ structure with a = 4.6874(4) $AA$ and c = 16.8422(12) $AA$ for the Pt-based one (Pd: a = 4.6896 $AA$ and c = 16.891 AA). Specific heat experiments on Ce$_3$PtIn$_{11}$ and Ce$_3$PdIn$_{11}$ have revealed that both compounds undergo two successive magnetic transitions at T$_1$ ~ 2.2 K followed by T$_N$ ~ 2.0 K and T$_1$ ~ 1.7 K and T$_N$ ~ 1.5 K, respectively. Additionally, both compounds exhibit enhanced Sommerfeld coefficients yielding {gamma}$_{Pt}$ = 0.300 J/mol K$^2$ Ce ({gamma}$_{Pd}$ = 0.290 J/mol K$^2$ Ce), hence qualifying them as heavy fermion materials.
Solution growth of single crystals of the recently reported new compound Ce2PdIn8 was investigated. When growing from a stoichiometry in a range 2:1:20 - 2:1:35, single crystals of CeIn3 covered by a thin (~50 um) single-crystalline layer of Ce2PdIn8 were mostly obtained. Using palladium richer compositions the thickness of the Ce2PdIn8 layers were increased, which allowed mechanical extraction of single-phase slabs of the desired compound suitable for a thorough study of magnetism and superconductivity. In some solution growth products also CePd3In6 (LaNi3In6 - type of structure) and traces of phases with the stoichiometry CePd2In7, Ce1.5Pd1.5In7 (determined only by EDX) have been identified. Magnetic measurements of the Ce2PdIn8 single crystals reveal paramagnetic behaviour of the Ce3+ ions with significant magnetocrystalline anisotropy. Above 70 K the magnetic susceptibility follows the Curie-Weiss law with considerably different values of the paramagnetic Curie temperature, for the magnetic field applied along the a- (-90 K) and c-(-50 K) axis. Below the reported critical temperature for superconductivity Tc (0.69 K) the electrical resistivity drops to zero. Comparative measurements of the electrical resistivity, heat capacity and AC susceptibility of several crystals reveal that the superconducting transition is strongly sample-dependent.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا