Do you want to publish a course? Click here

Characterizing the in uence of network properties on the global emerging behavior of interacting elements constitutes a central question in many areas, from physical to social sciences. In this article we study a primary model of disordered neuronal networks with excitatory-inhibitory structure and balance constraints. We show how the interplay between structure and disorder in the connectivity leads to a universal transition from trivial to synchronized stationary or periodic states. This transition cannot be explained only through the analysis of the spectral density of the connectivity matrix. We provide a low dimensional approximation that shows the role of both the structure and disorder in the dynamics.
We review a recent approach to the mean-field limits in neural networks that takes into account the stochastic nature of input current and the uncertainty in synaptic coupling. This approach was proved to be a rigorous limit of the network equations in a general setting, and we express here the results in a more customary and simpler framework. We propose a heuristic argument to derive these equations providing a more intuitive understanding of their origin. These equations are characterized by a strong coupling between the different moments of the solutions. We analyse the equations, present an algorithm to simulate the solutions of these mean-field equations, and investigate numerically the equations. In particular, we build a bridge between these equations and Sompolinsky and collaborators approach (1988, 1990), and show how the coupling between the mean and the covariance function deviates from customary approaches.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا