Do you want to publish a course? Click here

Given a random word of size $n$ whose letters are drawn independently from an ordered alphabet of size $m$, the fluctuations of the shape of the random RSK Young tableaux are investigated, when $n$ and $m$ converge together to infinity. If $m$ does not grow too fast and if the draws are uniform, then the limiting shape is the same as the limiting spectrum of the GUE. In the non-uniform case, a control of both highest probabilities will ensure the convergence of the first row of the tableau toward the Tracy--Widom distribution.
Let $X=(X_i)_{ige 1}$ and $Y=(Y_i)_{ige 1}$ be two sequences of independent and identically distributed (iid) random variables taking their values, uniformly, in a common totally ordered finite alphabet. Let LCI$_n$ be the length of the longest common and (weakly) increasing subsequence of $X_1cdots X_n$ and $Y_1cdots Y_n$. As $n$ grows without bound, and when properly centered and normalized, LCI$_n$ is shown to converge, in distribution, towards a Brownian functional that we identify.
We consider a collection of Euclidean random balls in ${Bbb R}^d$ generated by a determinantal point process inducing interaction into the balls. We study this model at a macros-copic level obtained by a zooming-out and three different regimes --Gaussian, Poissonian and stable-- are exhibited as in the Poissonian model without interaction. This shows that the macroscopic behaviour erases the interactions induced by the determinantal point process.
We derive joint factorial moment identities for point processes with Papangelou intensities. Our proof simplifies previous approaches to related moment identities and includes the setting of Poisson point processes. Applications are given to random transformations of point processes and to their distribution invariance properties.
We investigate generalizations of the Cramer theorem. This theorem asserts that a Gaussian random variable can be decomposed into the sum of independent random variables if and only if they are Gaussian. We prove asymptotic counterparts of such decomposition results for multiple Wiener integrals and prove that similar results are true for the (asymptotic) decomposition of the semicircular distribution into free multiple Wigner integrals.
We consider a generalization of the weighted random ball model. The model is driven by a random Poisson measure with a product heavy tailed intensity measure. Such a model typically represents the transmission of a network of stations with a fading effect. In a previous article, the authors proved the convergence of the finite-dimensional distributions of related generalized random fields under various scalings and in the particular case when the fading function is the indicator function of the unit ball. In this paper, tightness and functional convergence are investigated. Using suitable moment estimates, we prove functional convergences for some parametric classes of configurations under the so-called large ball scaling and intermediate ball scaling. Convergence in the space of distributions is also discussed.
In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractional Brownian motion is known or unknown are investigated. These intervals are obtained by observing a single discretized sample path of a fractional Brownian motion and without any assumption on the parameter $H$.
We investigate the regularity of shot noise series and of Poisson integrals. We give conditions for the absolute continuity of their law with respect to Lebesgue measure and for their continuity in total variation norm. In particular, the case of truncated series in adressed. Our method relies on a disintegration of the probability space based on a mere conditioning by the first jumps of the underlying Poisson process.
We consider weighted random balls in $real^d$ distributed according to a random Poisson measure with heavy-tailed intensity and study the asymptotic behaviour of the total weight of some configurations in $real^d$. This procedure amounts to be very rich and several regimes appear in the limit, depending on the intensity of the balls, the zooming factor, the tail parameters of the radii and of the weights. Statistical properties of the limit fields are also evidenced, such as isotropy, self-similarity or dependence. One regime is of particular interest and yields $alpha$-stable stationary isotropic self-similar generalized random fields which recovers Takenaka fields, Telecom process or fractional Brownian motion.
Let $qgeq 2$ be a positive integer, $B$ be a fractional Brownian motion with Hurst index $Hin(0,1)$, $Z$ be an Hermite random variable of index $q$, and $H_q$ denote the Hermite polynomial having degree $q$. For any $ngeq 1$, set $V_n=sum_{k=0}^{n-1} H_q(B_{k+1}-B_k)$. The aim of the current paper is to derive, in the case when the Hurst index verifies $H>1-1/(2q)$, an upper bound for the total variation distance between the laws $mathscr{L}(Z_n)$ and $mathscr{L}(Z)$, where $Z_n$ stands for the correct renormalization of $V_n$ which converges in distribution towards $Z$. Our results should be compared with those obtained recently by Nourdin and Peccati (2007) in the case when $H<1-1/(2q)$, corresponding to the situation where one has normal approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا