Do you want to publish a course? Click here

A fundamental prediction of quantum mechanics is that there are random fluctuations everywhere in a vacuum because of the zero-point energy. Remarkably, quantum electromagnetic fluctuations can induce a measurable force between neutral objects, known as the Casimir effect, which has attracted broad interests. The Casimir effect can dominate the interaction between microstructures at small separations and has been utilized to realize nonlinear oscillation, quantum trapping, phonon transfer, and dissipation dilution. However, a non-reciprocal device based on quantum vacuum fluctuations remains an unexplored frontier. Here we report quantum vacuum mediated non-reciprocal energy transfer between two micromechanical oscillators. We modulate the Casimir interaction parametrically to realize strong coupling between two oscillators with different resonant frequencies. We engineer the systems spectrum to have an exceptional point in the parameter space and observe the asymmetric topological structure near it. By dynamically changing the parameters near the exceptional point and utilizing the non-adiabaticity of the process, we achieve non-reciprocal energy transfer with high contrast. Our work represents an important development in utilizing quantum vacuum fluctuations to regulate energy transfer at the nanoscale and build functional Casimir devices.
Optically levitated nonspherical particles in vacuum are excellent candidates for torque sensing, rotational quantum mechanics, high-frequency gravitational wave detection, and multiple other applications. Many potential applications, such as detecting the Casimir torque near a birefringent surface, require simultaneous cooling of both the center-of-mass motion and the torsional vibration (or rotation) of a nonspherical nanoparticle. Here we report the first 5D cooling of a levitated nanoparticle. We cool the 3 center-of-mass motion modes and 2 torsional vibration modes of a levitated nanodumbbell in a linearly-polarized laser simultaneously. The only uncooled rigid-body degree of freedom is the rotation of the nanodumbbell around its long axis. This free rotation mode does not couple to the optical tweezers directly. Surprisingly, we observe that it strongly affects the torsional vibrations of the nanodumbbell. This work deepens our understanding of the nonlinear dynamics and rotation coupling of a levitated nanoparticle and paves the way towards full quantum control of its motion.
Torque sensors such as the torsion balance enabled the first determination of the gravitational constant by Cavendish and the discovery of Coulombs law. Torque sensors are also widely used in studying small-scale magnetism, the Casimir effect, and other applications. Great effort has been made to improve the torque detection sensitivity by nanofabrication and cryogenic cooling. The most sensitive nanofabricated torque sensor has achieved a remarkable sensitivity of $10^{-24} rm{Nm}/sqrt{rm{Hz}}$ at millikelvin temperatures in a dilution refrigerator. Here we dramatically improve the torque detection sensitivity by developing an ultrasensitive torque sensor with an optically levitated nanorotor in vacuum. We measure a torque as small as $(1.2 pm 0.5) times 10^{-27} rm{Nm}$ in 100 seconds at room temperature. Our system does not require complex nanofabrication or cryogenic cooling. Moreover, we drive a nanoparticle to rotate at a record high speed beyond 5 GHz (300 billion rpm). Our calculations show that this system will be able to detect the long-sought vacuum friction near a surface under realistic conditions. The optically levitated nanorotor will also have applications in studying nanoscale magnetism and quantum geometric phase.
Levitated optomechanics has great potentials in precision measurements, thermodynamics, macroscopic quantum mechanics and quantum sensing. Here we synthesize and optically levitate silica nanodumbbells in high vacuum. With a linearly polarized laser, we observe the torsional vibration of an optically levitated nanodumbbell in vacuum. The linearly-polarized optical tweezer provides a restoring torque to confine the orientation of the nanodumbbell, in analog to the torsion wire which provides restoring torque for suspended lead spheres in the Cavendish torsion balance. Our calculation shows its torque detection sensitivity can exceed that of the current state-of-the-art torsion balance by several orders. The levitated nanodumbbell torsion balance provides rare opportunities to observe the Casimir torque and probe the quantum nature of gravity as proposed recently. With a circularly-polarized laser, we drive a 170-nm-diameter nanodumbbell to rotate beyond 1~GHz, which is the fastest nanomechanical rotor realized to date. Our calculations show that smaller silica nanodumbbells can sustain rotation frequency beyond 10 GHz. Such ultrafast rotation may be used to study material properties and probe vacuum friction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا