Do you want to publish a course? Click here

The current status of searches for ultra-high energy neutrinos and photons using air showers is reviewed. Regarding both physics and observational aspects, possible future research directions are indicated.
Proton-nucleus (p+A) collisions have long been recognized as a crucial component of the physics programme with nuclear beams at high energies, in particular for their reference role to interpret and understand nucleus-nucleus data as well as for their potential to elucidate the partonic structure of matter at low parton fractional momenta (small-x). Here, we summarize the main motivations that make a proton-nucleus run a decisive ingredient for a successful heavy-ion programme at the Large Hadron Collider (LHC) and we present unique scientific opportunities arising from these collisions. We also review the status of ongoing discussions about operation plans for the p+A mode at the LHC.
Recent measurements suggest that extensive air showers initiated by ultra-high energy cosmic rays (UHECR) emit signals in the microwave band of the electromagnetic spectrum caused by the collisions of the free-electrons with the atmospheric neutral molecules in the plasma produced by the passage of the shower. Such emission is isotropic and could allow the detection of air showers with 100% duty cycle and a calorimetric-like energy measurement, a significant improvement over current detection techniques. We have built MIDAS (MIcrowave Detection of Air Showers), a prototype of microwave detector, which consists of a 4.5 m diameter antenna with a cluster of 53 feed-horns in the 4 GHz range. The details of the prototype and first results will be presented.
Inclined air showers - those arriving at ground with zenith angle with respect to the vertical theta > 60 deg - are characterised by the dominance of the muonic component at ground which is accompanied by an electromagnetic halo produced mainly by muon decay and muon interactions. By means of Monte Carlo simulations we give a full characterisation of the particle densities at ground in ultra-high energy inclined showers as a function of primary energy and mass composition, as well as for different hadronic models assumed in the simulations. We also investigate the effect of intrinsic shower-to-shower fluctuations in the particle densities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا