Do you want to publish a course? Click here

Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of $J/psi$ photoproduction off the deuteron in UPCs at the center-of-mass energy $sqrt{s_{_{rm NN}}}=200~rm GeV$ in d$+$Au collisions. The differential cross section as a function of momentum transfer $-t$ is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.
A recent time-integrated analysis of a catalog of 110 candidate neutrino sources revealed a cumulative neutrino excess in the data collected by IceCube between April 6, 2008 and July 10, 2018. This excess, inconsistent with the background hypothesis in the Northern hemisphere at the $3.3~sigma$ level, is associated with four sources: NGC 1068, TXS 0506+056, PKS 1424+240 and GB6 J1542+6129. This letter presents two time-dependent neutrino emission searches on the same data sample and catalog: a point-source search that looks for the most significant time-dependent source of the catalog by combining space, energy and time information of the events, and a population test based on binomial statistics that looks for a cumulative time-dependent neutrino excess from a subset of sources. Compared to previous time-dependent searches, these analyses enable a feature to possibly find multiple flares from a single direction with an unbinned maximum-likelihood method. M87 is found to be the most significant time-dependent source of this catalog at the level of $1.7~sigma$ post-trial, and TXS 0506+056 is the only source for which two flares are reconstructed. The binomial test reports a cumulative time-dependent neutrino excess in the Northern hemisphere at the level of $3.0~sigma$ associated with four sources: M87, TXS 0506+056, GB6 J1542+6129 and NGC 1068.
The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $cal P$ and $cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimen tal manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $sqrt{s_{rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.
We report on the first multi-differential measurement of $phi$ meson and $Xi^{-}$ hyperon production as well as the $phi/K^-$ and $phi/Xi^-$ ratio in Au+Au collisions at ${sqrt{s_{rm NN}} = rm{3,GeV}}$ with the STAR experiment under its fixed targ et configuration at RHIC. $phi$ mesons and $Xi^{-}$ hyperons are measured through their hadronic decay channels, $phirightarrow K^+K^-$ and $Xi^-rightarrow Lambdapi^-$. The transverse kinetic energy spectra of $K^-$, $phi$ and $Xi^{-}$ are presented in different centrality and rapidity intervals. The total production yields and the ratios within a $4pi$ coverage are calculated and compared to thermal model predictions. A calculation within the grand canonical ensemble framework shows a clear discrepancy from our measurement. Our data favor the canonical ensemble approach employing local strangeness conservation with a small strangeness correlation length ($r_c leq 4.2$ fm) in 0--10% central Au+Au collisions at ${sqrt{s_{rm NN}} = rm{3,GeV}}$.
We report on the measurements of directed flow $v_1$ and elliptic flow $v_2$ for hadrons ($pi^{pm}$, $K^{pm}$, $K_{S}^0$, $p$, $phi$, $Lambda$ and $Xi^{-}$) from Au+Au collisions at $sqrt{s_{NN}}$ = 3 GeV and $v_{2}$ for ($pi^{pm}$, $K^{pm}$, $p$ and $overline{p}$) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the number-of-constituent-quark (NCQ) scaling holds, at 3 GeV the midrapidity $v_{2}$ is negative for all hadrons and the NCQ scaling is absent. In addition, the midrapidity $v_1$ slopes for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative $v_2$ and positive $v_1$ slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that in 3 GeV Au+Au collisions, the medium is characterized by baryonic interactions.
Global hyperon polarization, $overline{P}_mathrm{H}$, in Au+Au collisions over a large range of collision energy, $sqrt{s_mathrm{NN}}$, has recently been measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the Quark-Gluon Plasma (QGP). While na{i}ve extrapolation of data trends suggests a large $overline{P}_mathrm{H}$ as the collision energy is reduced, the behavior of $overline{P}_mathrm{H}$ at small $sqrt{s_mathrm{NN}}<7.7$ GeV is unknown. Operating the STAR experiment in fixed-target mode, we have measured the polarization of $Lambda$ hyperons along the direction of global angular momentum in Au+Au collisions at $sqrt{s_mathrm{NN}}=3$ GeV. The observation of substantial polarization of $4.91pm0.81(rm stat.)pm0.15(rm syst.)$% in these collisions may require a reexamination of the viscosity of any fluid created in the collision, the thermalization timescale of rotational modes, and of hadronic mechanisms to produce global polarization.
IceCube-Gen2 is a planned extension of the IceCube Neutrino Observatory at the South Pole. The extension is optimized to search for sources of astrophysical neutrinos from TeV to EeV, and will improve the sensitivity of the observatory to neutrino point sources by a factor of five. The science case of IceCube-Gen2 is built on a successful decade of observations with IceCube. This index of contributions to the 37th International Cosmic Ray Conference in Berlin, Germany (12-23 July 2021) describes research and development efforts for IceCube-Gen2. Included are performance studies of next-generation optical sensors that will detect Cherenkov radiation from TeV-PeV cosmic rays and neutrinos; optimizations of the geometries of the surface and in-ice optical arrays; and estimates of the sensitivity of the proposed IceCube-Gen2 radio array to Askaryan emission from PeV-EeV neutrinos. Contributions related to the existing instrument, IceCube, are available in a separate collection.
This list of contributions to the 37th International Cosmic Ray Conference in Berlin, Germany (12-23 July 2021) summarizes the latest results from the IceCube Neutrino Observatory. IceCube, completed 10 years ago at the geographic South Pole, comprises a surface detector designed to observe cosmic ray air showers, a cubic-kilometer array of optical sensors deployed deep in the ice sheet to observe TeV-PeV neutrinos, and a 15 Megaton deep-ice subdetector sensitive to >10 GeV neutrinos. Data from IceCube are used to investigate a broad set of key questions in physics and astrophysics, such as the origins of galactic and extragalactic cosmic rays, the fundamental properties of neutrinos, and searches for physics beyond the Standard Model. The papers in this index are grouped topically to highlight IceCube contributions related to neutrino and multi-messenger astrophysics, cosmic-ray physics, fundamental physics, education and public outreach, and research and development for next-generation neutrino observatories. Contributions related to IceCube-Gen2, the future extension of IceCube, are available in a separate collection.
Ultra-luminous infrared galaxies (ULIRGs) have infrared luminosities $L_{mathrm{IR}} geq 10^{12} L_{odot}$, making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star-formation rates that exceed $100~ M_{odot}~ mathrm{yr}^{-1}$, possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift $z leq 0.13$ using 7.5 years of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken $E^{-2.5}$ power-law spectrum, we report an upper limit on the stacked flux $Phi_{ u_mu + bar{ u}_mu}^{90%} = 3.24 times 10^{-14}~ mathrm{TeV^{-1}~ cm^{-2}~ s^{-1}}~ (E/10~ mathrm{TeV})^{-2.5}$ at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.
The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen with a significance of 1--3 standard deviations in mid-central (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا