Do you want to publish a course? Click here

106 - I-Sheng Yang 2012
The usual (type A) thin-wall Coleman-de Luccia instanton is made by a bigger-than-half sphere of the false vacuum and a smaller-than-half sphere of the true vacuum. It has a the standard O(4) symmetric negative mode associated with changing the size of false vacuum region. On the other hand, the type B instanton, made by two smaller-than-half spheres, was believed to have lost this negative mode. We argue that such belief is misguided due to an over-restriction on Euclidean path integral. We introduce the idea of a purely geometric junction to visualize why such restriction could be removed, and then explicitly construct this negative mode. We also show that type B and type A instantons have the same thermal interpretation for mediating tunnelings.
118 - I-Sheng Yang 2012
Slowroll after tunneling is a crucial step in one popular framework of the multiverse---false vacuum eternal inflation (FVEI). In a landscape with a large number of fields, we provide a heuristic estimation for its probability. We find that the chance to slowroll is exponentially suppressed, where the exponent comes from the number of fields. However, the relative probability to have more e-foldings is only mildly suppressed as $N_e^{-alpha} $ with $alphasim3$. Base on these two properties, we show that the FVEI picture is still self-consistent and may have a strong preference between different slowroll models.
We present the simplest model for classical transitions in flux vacua. A complex field with a spontaneously broken U(1) symmetry is embedded in $M_2times S_1$. We numerically construct different winding number vacua, the vortices interpolating between them, and simulate the collisions of these vortices. We show that classical transitions are generic at large boosts, independent of whether or not vortices miss each other in the compact $S_1$.
We argue that classical transitions can be the key to explaining the long standing puzzle of the fast A-B phase transition observed in superfluid Helium 3 while standard theory expects it to be unobservably slow. Collisions between domain walls are shown to be capable of reaching phases inaccessible through homogenous nucleation on the measured timescales. We demonstrate qualitative agreements with prior observations and provide a definite, distinctive prediction that could be verified through future experiments or, perhaps, a specific analysis of existing data.
171 - Ali Masoumi , I-Sheng Yang 2011
We present analytical solutions of BPS domain walls in the Einstein-Maxwell flux landscape. We also remove the smeared-branes approximation and write down solutions with localized branes. In these solutions the domain walls induce strong (if not infinite) warping.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا