Do you want to publish a course? Click here

We investigate a specific finite element model to study the thermoelastic behavior of an elastic body within the context of nonlinear strain-limiting constitutive relation. As a special subclass of implicit relations, the thermoelastic response of our interest is such that stresses can be arbitrarily large, but strains remain small, especially in the neighborhood of crack-tips. Thus, the proposed model can be inherently consistent with the assumption of the small strain theory. In the present communication, we consider a two-dimensional coupled system-linear and quasilinear partial differential equations for temperature and displacements, respectively. Two distinct temperature distributions of the Dirichlet type are considered for boundary condition, and a standard finite element method of continuous Galerkin is employed to obtain the numerical solutions for the field variables. For a domain with an edge-crack, we find that the near-tip strain growth of our model is much slower than the growth of stress, which is the salient feature compared to the inconsistent results of the classical linearized description of the elastic body. Current study can provide a theoretical and computational framework to develop physically meaningful models and examine other coupled multi-physics such as an evolution of complex network of cracks induced by thermal shocks.
We present a novel constitutive model using the framework of strain-limiting theories of elasticity for an evolution of quasi-static anti-plane fracture. The classical linear elastic fracture mechanics (LEFM), with conventional linear relationship between stress and strain, has a well documented inconsistency through which it predicts a singular cracktip strain. This clearly violates the basic tenant of the theory which is a first order approximation to finite elasticity. To overcome the issue, we investigate a new class of material models which predicts uniform and bounded strain throughout the body. The nonlinear model allows the strain value to remain small even if the stress value tends to infinity, which is achieved by an implicit relationship between stress and strain. A major objective of this paper is to couple a nonlinear bulk energy with diffusive crack employing the phase-field approach. Towards that end, an iterative L-scheme is employed and the numerical model is augmented with a penalization technique to accommodate irreversibility of crack. Several numerical experiments are presented to illustrate the capability and the performance of the proposed framework We observe the naturally bounded strain in the neighborhood of the crack-tip, leading to different bulk and crack energies for fracture propagation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا