Do you want to publish a course? Click here

By using Majoranas stellar representation, we give a clear geometrical interpretation of the topological phases of inversion-symmetric polymerized models by mapping the Bloch states of multi-band systems to Majorana stars on the Bloch sphere. While trajectories of Majorana stars of a filled Bloch band exhibit quite different geometrical structures for topologically trivial and nontrivial phases, we further demonstrate that these structures are uniquely determined by distributions of Majorana stars of two high-symmetrical momentum states, which have different parities for topologically different states.
We investigate the magnetic properties of spin-$1/2$ charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with each other. When increasing the ferromagnetic coupling the spontaneous magnetization occurs in a weak magnetic field. The critical ferromagnetic coupling constant of the paramagnetic phase to ferromagnetic phase transition increases linearly with the temperature. Both the paramagnetism and diamagnetism increase when the magnetic field increases. It reveals the magnetization density $bar M$ increases firstly as the temperature increases, and then reaches a maximum. Finally the magnetization density $bar M$ decreases smoothly in the high temperature region. The domed shape of the magnetization density $bar M$ variation is different from the behavior of Bose gas with ferromagnetic coupling. We also find the curve of susceptibility follows the Curie-Weiss law, and for a given temperature the susceptibility is directly proportional to the Land{e} factor.
262 - Jihong Qin , , Huaiming Guo 2013
The topological property in one dimension (1D) is protected by symmetry. Based on a concrete model, we show that since a 1D topological model usually contain two of the three Pauli matrix, the left one automatically become the protecting symmetry. We study the effect of disorder preserving or breaking the symmetry and show the nature of symmetry protecting in the 1D topological phase. Based on the 1D topological model, a stable quantum pumping can be constructed, which is topologically nontrivial and can be characterized by the Chern number. By calculating the instantaneous local current we show that an integer charge is pumped across a periodic chain in a cyclic process. Also on an open chain, an edge state can be transferred to the other edge by the quantum pumping. Furthermore we find that not only the quantum pumping is stable to on-site disorder, but also can be induced by it. These results may be realized experimentally using quasicrystals.
The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough.
95 - Zhi Wang , Huaiming Guo , 2008
Within the framework of the kinetic energy driven superconducting mechanism, the effect of the extended impurity scatterers on the quasiparticle transport of cuprate superconductors in the superconducting state is studied based on the nodal approximation of the quasiparticle excitations and scattering processes. It is shown that there is a cusplike shape of the energy dependent microwave conductivity spectrum. At low temperatures, the microwave conductivity increases linearly with increasing temperatures, and reaches a maximum at intermediate temperature, then decreases with increasing temperatures at high temperatures. In contrast with the dome shape of the doping dependent superconducting gap parameter, the minimum microwave conductivity occurs around the optimal doping, and then increases in both underdoped and overdoped regimes.
In this paper, we review the low energy electronic structure of the kinetic energy driven d-wave cuprate superconductors. We give a general description of the charge-spin separation fermion-spin theory, where the constrained electron is decoupled as the gauge invariant dressed holon and spin. In particular, we show that under the decoupling scheme, the charge-spin separation fermion-spin representation is a natural representation of the constrained electron defined in a restricted Hilbert space without double electron occupancy. Based on the charge-spin separation fermion-spin theory, we have developed the kinetic energy driven superconducting mechanism, where the superconducting state is controlled by both superconducting gap parameter and quasiparticle coherence. Within this kinetic energy driven superconductivity, we have discussed the low energy electronic structure of the single layer and bilayer cuprate superconductors in both superconducting and normal states, and qualitatively reproduced all main features of the angle-resolved photoemission spectroscopy measurements on the single layer and bilayer cuprate superconductors. We show that the superconducting state in cuprate superconductors is the conventional Bardeen-Cooper-Schrieffer like with the d-wave symmetry, so that the basic Bardeen-Cooper-Schrieffer formalism with the d-wave gap function is still valid in discussions of the low energy electronic structure of cuprate superconductors, although the pairing mechanism is driven by the kinetic energy by exchanging spin excitations. We also show that the well pronounced peak-dip-hump structure of the bilayer cuprate superconductors in the superconducting state and double-peak structure in the normal state are mainly caused by the bilayer splitting.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا