Do you want to publish a course? Click here

Within the framework of the effective Lagrangian approach, we perform a thorough analysis of the $J/psi to Pgamma(gamma^*)$, $J/psi to VP$, $Vto Pgamma(gamma^*)$, $Pto Vgamma(gamma^*)$ and $Ptogammagamma(gamma^*)$ processes, where $V$ stand for light vector resonances, $P$ stand for light pseudoscalar mesons, and $gamma^*$ subsequently decays into lepton pairs. The processes with light pseudoscalar mesons $eta$ and $eta$ are paid special attention to and the two-mixing-angle scheme is employed to describe their mixing. The four mixing parameters both in singlet-octet and quark-flavor bases are updated in this work. We confirm that the $J/psi to eta(eta^{prime})gamma^{(*)}$ processes are predominantly dominated by the $J/psito eta_c gamma^{*} to eta(eta^{prime})gamma^{(*)}$ mechanism. Predictions for the $J/psi to P mu^+mu^-$ are presented. A detailed discussion on the interplay between electromagnetic and strong transitions in the $J/psi to VP$ decays is given.
Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of systems by using a Slater-Koster tight-binding model. We predict that topological superconductivity is nearly universal when ferromagnetic transition metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. The proximity induced superconducting gap is $sim Delta E_{so} / J$ where $Delta$ is the $s$-wave pair-potential on the chain, $E_{so}$ is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and $J$ is the exchange-splitting of the ferromagnetic chain $d$-bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the $p$-wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong $s-$wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple Majorana modes at the end of a single chain.
We study an Anderson impurity embedded in a d-wave superconductor carrying a supercurrent. The low-energy impurity behavior is investigated by using the numerical renormalization group method developed for arbitrary electronic bath spectra. The results explicitly show that the local impurity state is completely screened upon the non-zero current intensity. The impurity quantum criticality is in accordance with the well-known Kosterlitz-Thouless transition.
We report a new metric of quantum states. This metric is build up from super-fidelity, which has deep connection with the Uhlmann-Jozsa fidelity and plays an important role in quantifying entanglement. We find that the new metric possess some interesting properties.
219 - Zi-Xiang Hu , Hua Chen , Kun Yang 2008
We present a numerical study of fractional quantum Hall liquid at Landau level filling factor $ u=2/3$ in a microscopic model including long-range Coulomb interaction and edge confining potential, based on the disc geometry. We find the ground state is accurately described by the particle-hole conjugate of a $ u=1/3$ Laughlin state. We also find there are two counter-propagating edge modes, and the velocity of the forward-propagating mode is larger than the backward-propagating mode. The velocities have opposite responses to the change of the background confinement potential. On the other hand changing the two-body Coulomb potential has qualitatively the same effect on the velocities; for example we find increasing layer thickness (which softens of the Coulomb interaction) reduces both the forward mode and the backward mode velocities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا