Do you want to publish a course? Click here

This paper discusses the important role of controllability played on the complexity of optimizing quantum mechanical control systems. The study is based on a topology analysis of the corresponding quantum control landscape, which is referred to as the optimization objective as a functional of control fields. We find that the degree of controllability is closely relevant with the ruggedness of the landscape, which determines the search efficiency for global optima. This effect is demonstrated via the gate fidelity control landscape of a system whose controllability is restricted on a SU(2) dynamic symmetry group. We show that multiple local false traps (i.e., non-global suboptima) exist even if the target gate is realizable and that the number of these traps is increased by the loss of controllability, while the controllable systems are always devoid of false traps.
An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement on the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach for controlling quantum systems with partial controllability information.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا