Do you want to publish a course? Click here

Quantum error correction (QEC) is fundamental for quantum information processing but entails a substantial overhead of classically-controlled quantum operations, which can be architecturally cumbersome to accommodate. Here we discuss a novel approach to designing elementary QEC memory cells, in which all control operations are performed autonomously by an embedded optical feedback loop. Our approach is natural for nanophotonic implementations in which each qubit can be coupled to its own optical resonator, and our design for a memory cell based on the quantum bit-flip or phase-flip code requires only five qubit-cavities (three for the register and two for the controller) connected by wave-guides. The photonic QEC circuit is entirely on-chip, requiring no external clocking or control, and during steady-state operation would only need to be powered by the injection of constant-amplitude coherent fields.
In this paper, we consider a linear quantum network composed of two distantly separated cavities that are connected via a one-way optical field. When one of the cavity is damped and the other is undamped, the overall cavity state obtains a large amount of entanglement in its quadratures. This entanglement however immediately decays and vanishes in a finite time. That is, entanglement sudden-death occurs. We show that the direct measurement feedback method proposed by Wiseman can avoid this entanglement sudden-death, and further, enhance the entanglement. It is also shown that the entangled state under feedback control is robust against signal loss in a realistic detector, indicating the reliability of the proposed direct feedback method in practical situations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا