Do you want to publish a course? Click here

The structural and dynamical properties of star clusters are generally derived by means of the comparison between steady-state analytic models and the available observables. With the aim of studying the biases of this approach, we fitted different analytic models to simulated observations obtained from a suite of direct N-body simulations of star clusters in different stages of their evolution and under different levels of tidal stress to derive mass, mass function and degree of anisotropy. We find that masses can be under/over-estimated up to 50% depending on the degree of relaxation reached by the cluster, the available range of observed masses and distances of radial velocity measures from the cluster center and the strength of the tidal field. The mass function slope appears to be better constrainable and less sensitive to model inadequacies unless strongly dynamically evolved clusters and a non-optimal location of the measured luminosity function are considered. The degree and the characteristics of the anisotropy developed in the N-body simulations are not adequately reproduced by popular analytic models and can be detected only if accurate proper motions are available. We show how to reduce the uncertainties in the mass, mass-function and anisotropy estimation and provide predictions for the improvements expected when Gaia proper motions will be available in the near future.
Supermassive black holes (SMBHs) are fundamental keys to understand the formation and evolution of their host galaxies. However, the formation and growth of SMBHs are not yet well understood. One of the proposed formation scenarios is the growth of SMBHs from seed intermediate-mass black holes (IMBHs, 10^2 to 10^5 M_{odot}) formed in star clusters. In this context, and also with respect to the low mass end of the M-sigma relation for galaxies, globular clusters are in a mass range that make them ideal systems to look for IMBHs. Among Galactic star clusters, the massive cluster $omega$ Centauri is a special target due to its central high velocity dispersion and also its multiple stellar populations. We study the central structure and dynamics of the star cluster $omega$ Centauri to examine whether an IMBH is necessary to explain the observed velocity dispersion and surface brightness profiles. We perform direct N-body simulations to follow the dynamical evolution of $omega$ Centauri. The simulations are compared to the most recent data-sets in order to explain the present-day conditions of the cluster and to constrain the initial conditions leading to the observed profiles. We find that starting from isotropic spherical multi-mass King models and within our canonical assumptions, a model with a central IMBH mass of 2% of the cluster stellar mass, i.e. a 5x10^4 M_{odot} IMBH, provides a satisfactory fit to both the observed shallow cusp in surface brightness and the continuous rise towards the center of the radial velocity dispersion profile. In our isotropic spherical models, the predicted proper motion dispersion for the best-fit model is the same as the radial velocity dispersion one. (abridged)
Based on our recent work on tidal tails of star clusters (Kuepper et al. 2009) we investigate star clusters of a few 10^4 Msun by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of $N$-body computations of star clusters on various orbits within a realistic tidal field to study the evolution of these profiles with time, and ongoing cluster dissolution From the velocity dispersion profiles we find that the population of potential escapers, i.e. energetically unbound stars inside the Jacobi radius, dominates clusters at radii above about 50% of the Jacobi radius. Beyond 70% of the Jacobi radius nearly all stars are energetically unbound. The velocity dispersion therefore significantly deviates from the predictions of simple equilibrium models in this regime. We furthermore argue that for this reason this part of a cluster cannot be used to detect a dark matter halo or deviations from Newtonian gravity. By fitting templates to the about 10^4 computed surface density profiles we estimate the accuracy which can be achieved in reconstructing the Jacobi radius of a cluster in this way. We find that the template of King (1962) works well for extended clusters on nearly circular orbits, but shows significant flaws in the case of eccentric cluster orbits. This we fix by extending this template with 3 more free parameters. Our template can reconstruct the tidal radius over all fitted ranges with an accuracy of about 10%, and is especially useful in the case of cluster data with a wide radial coverage and for clusters showing significant extra-tidal stellar populations. No other template that we have tried can yield comparable results over this range of cluster conditions. All templates fail to reconstruct tidal parameters of concentrated clusters, however. (abridged)
Based on recent findings of a formation mechanism of substructure in tidal tails by Kuepper, Macleod & Heggie (2008) we investigate a more comprehensive set of N-body models of star clusters on orbits about a Milky-Way-like potential. We find that the predicted epicyclic overdensities arise in any tidal tail no matter which orbit the cluster follows as long as the cluster lives long enough for the overdensities to build up. The distance of the overdensities along the tidal tail from the cluster centre depends for circular orbits only on the mass of the cluster and the strength of the tidal field, and therefore decreases monotonically with time, while for eccentric orbits the orbital motion influences the distance, causing a periodic compression and stretching of the tails and making the distance oscillate with time. We provide an approximation for estimating the distance of the overdensities in this case. We describe an additional type of overdensity which arises in extended tidal tails of clusters on eccentric orbits, when the acceleration of the tidal field on the stellar stream is no longer homogeneous. Moreover, we conclude that a pericentre passage or a disk shock is not the direct origin of an overdensity within a tidal tail. Escape due to such tidal perturbations does not take place immediately after the perturbation but is rather delayed and spread over the orbit of the cluster. All observable overdensities are therefore of the mentioned two types. In particular, we note that substructured tidal tails do not imply the existence of dark-matter sub-structures in the haloes of galaxies.
184 - P. Anders 2009
Evolutionary synthesis models are the prime method to construct models of stellar populations, and to derive physical parameters from observations. One of the assumptions for such models so far has been the time-independence of the stellar mass function. However, dynamical simulations of star clusters in tidal fields have shown the mass function to change due to the preferential removal of low-mass stars from clusters. Here we combine the results from dynamical simulations of star clusters in tidal fields with our evolutionary synthesis code GALEV to extend the models by a new dimension: the total cluster disruption time. We reanalyse the mass function evolution found in N-body simulations of star clusters in tidal fields, parametrise it as a function of age and total cluster disruption time and use this parametrisation to compute GALEV models as a function of age, metallicity and the total cluster disruption time. We study the impact of cluster dissolution on the colour (generally, they become redder) and magnitude (they become fainter) evolution of star clusters, their mass-to-light ratios (off by a factor of ~2 -- 4 from standard predictions), and quantify the effect on the cluster age determination from integrated photometry (in most cases, clusters appear to be older than they are, between 20 and 200%). By comparing our model results with observed M/L ratios for old compact objects in the mass range 10^4.5 -- 10^8 Msun, we find a strong discrepancy for objects more massive than 10^7 Msun (higher M/L). This could be either caused by differences in the underlying stellar mass function or be an indication for the presence of dark matter in these objects. Less massive objects are well represented by the models. The models for a range of total cluster disruption times are available online. (shortened)
108 - P. Anders 2009
N-body simulations are widely used to simulate the dynamical evolution of a variety of systems, among them star clusters. Much of our understanding of their evolution rests on the results of such direct N-body simulations. They provide insight in the structural evolution of star clusters, as well as into the occurrence of stellar exotica. Although the major pure N-body codes STARLAB/KIRA and NBODY4 are widely used for a range of applications, there is no thorough comparison study yet. Here we thoroughly compare basic quantities as derived from simulations performed either with STARLAB/KIRA or NBODY4. We construct a large number of star cluster models for various stellar mass function settings (but without stellar/binary evolution, primordial binaries, external tidal fields etc), evolve them in parallel with STARLAB/KIRA and NBODY4, analyse them in a consistent way and compare the averaged results quantitatively. For this quantitative comparison we develop a bootstrap algorithm for functional dependencies. We find an overall excellent agreement between the codes, both for the clusters structural and energy parameters as well as for the properties of the dynamically created binaries. However, we identify small differences, like in the energy conservation before core collapse and the energies of escaping stars, which deserve further studies. Our results reassure the comparability and the possibility to combine results from these two major N-body codes, at least for the purely dynamical models (i.e. without stellar/binary evolution) we performed. (abridged)
A significant fraction of stars in globular clusters (about 70%-85%) exhibit peculiar chemical patterns with strong abundance variations in light elements along with constant abundances in heavy elements. These abundance anomalies can be created in the H-burning core of a first generation of fast rotating massive stars and the corresponding elements are convoyed to the stellar surface thanks to rotational induced mixing. If the rotation of the stars is fast enough this matter is ejected at low velocity through a mechanical wind at the equator. It then pollutes the ISM from which a second generation of chemically anomalous stars can be formed. The proportion of anomalous to normal star observed today depends on at least two quantities : (1) the number of polluter stars; (2) the dynamical history of the cluster which may lose during its lifetime first and second generation stars in different proportions. Here we estimate these proportions based on dynamical models for globular clusters. When internal dynamical evolution and dissolution due to tidal forces are accounted for, starting from an initial fraction of anomalous stars of 10% produces a present day fraction of about 25%, still too small with respect to the observed 70-85%. In case gas expulsion by supernovae is accounted for, much higher fraction is expected to be produced. In this paper we also address the question of the evolution of the second generation stars that are He-rich, and deduce consequences for the age determination of globular clusters.
We investigate the long-term dynamical evolution of two distinct stellar populations of low-mass stars in globular clusters in order to study whether the energy equipartition process can explain the high number of stars harbouring abundance anomalies seen in globular clusters. We analyse N-body models by artificially dividing the low-mass stars (m<0.9 Msun) into two populations: a small number of stars (second generation) consistent with an invariant IMF and with low specific energies initially concentrated towards the cluster-centre mimic stars with abundance anomalies. These stars form from the slow winds of fast-rotating massive stars. The main part of low-mass (first generation) stars has the pristine composition of the cluster. We study in detail how the two populations evolve under the influence of two-body elaxation and the tidal forces due to the host galaxy.Stars with low specific energy initially concentrated toward the cluster centre need about two relaxation times to achieve a complete homogenisation throughout the cluster. For realistic globular clusters, the number ratio between the two populations increases only by a factor 2.5 due to the preferential evaporation of the population of outlying first generation stars. We also find that the loss of information on the stellar orbital angular momentum occurs on the same timescale as spatial homogenisation.
111 - M. Gieles 2008
We study the escape rate, dN/dt, from clusters with different radii in a tidal field using analytical predictions and direct N-body simulations. We find that dN/dt depends on the ratio R=r_h/r_j, where r_h is the half-mass radius and r_j the radius of the zero-velocity surface. For R>0.05, the tidal regime, there is almost no dependence of dN/dt on R. To first order this is because the fraction of escapers per relaxation time, t_rh, scales approximately as R^1.5, which cancels out the r_h^1.5 term in t_rh. For R<0.05, the isolated regime, dN/dt scales as R^-1.5. Clusters that start with their initial R, Ri, in the tidal regime dissolve completely in this regime and their t_dis is insensitive to the initial r_h. We predicts that clusters that start with Ri<0.05 always expand to the tidal regime before final dissolution. Their t_dis has a shallower dependence on Ri than what would be expected when t_dis is a constant times t_rh. For realistic values of Ri, the lifetime varies by less than a factor of 1.5 due to changes in Ri. This implies that the survival diagram for globular clusters should allow for more small clusters to survive. We note that with our result it is impossible to explain the universal peaked mass function of globular cluster systems by dynamical evolution from a power-law initial mass function, since the peak will be at lower masses in the outer parts of galaxies. Our results finally show that in the tidal regime t_dis scales as N^0.65/w, with w the angular frequency of the cluster in the host galaxy. [ABRIDGED]
187 - L. Subr , P. Kroupa , H. Baumgardt 2008
Mass segregation stands as one of the most robust features of the dynamical evolution of self-gravitating star clusters. In this paper we formulate parametrised models of mass segregated star clusters in virial equilibrium. To this purpose we introduce mean inter-particle potentials for statistically described unsegregated systems and suggest a single-parameter generalisation of its form which gives a mass-segregated state. We describe an algorithm for construction of appropriate star cluster models. Their stability over several crossing-times is verified by following the evolution by means of direct N-body integration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا